This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity anal...This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity analysis can be used when individual parameters affecting fire safety are assessed. If the variation of a single parameter is found to have a major impact on fire safety, it may be necessary to conservatively select this parameter in order to incorporate additional safety. We compare fire scenarios in rooms surrounded by lightweight as well as heavy walls in order to investigate which parameters are the most significant in each case. We apply the Sobol method, which is a quantitative method that gives the percentage of the total output variance that each parameter accounts for. The most important parameter is found to be the energy release rate that explains 92% of the uncertainty in the calculated results for the period before thermal penetration (te) has occurred. The analysis is also done for all combinations of two parameters in order to find the combination with the largest effect. The Sobol total for pairs had the highest value for the combination of energy release rate and area of opening, which explains 96% of the uncertainty. After thermal penetration, the energy release rate is still the most important parameter, but now only explains 49% of the variation. The second parameter is the thickness of the surface material, which explains 43%.展开更多
Indomethacin has been encapsulated with polyelectrolyte multilayers for controlled release. Gelatin and alginate were alternatively deposited on indomethacin microcrystals. The released amount of indomethacin from coa...Indomethacin has been encapsulated with polyelectrolyte multilayers for controlled release. Gelatin and alginate were alternatively deposited on indomethacin microcrystals. The released amount of indomethacin from coated microcrystals in pH6. 8 phosphate buffer solution (PBS) was measured with a UV spectrophometer. The polyelectrolyte multilayer capsule thickness was proved to control the release rate. The effects of osmotic pressure existed during the release process of indomethacin from microcapsules coated by (gelatin/alginate) 4.展开更多
Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated...Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.展开更多
文摘This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity analysis can be used when individual parameters affecting fire safety are assessed. If the variation of a single parameter is found to have a major impact on fire safety, it may be necessary to conservatively select this parameter in order to incorporate additional safety. We compare fire scenarios in rooms surrounded by lightweight as well as heavy walls in order to investigate which parameters are the most significant in each case. We apply the Sobol method, which is a quantitative method that gives the percentage of the total output variance that each parameter accounts for. The most important parameter is found to be the energy release rate that explains 92% of the uncertainty in the calculated results for the period before thermal penetration (te) has occurred. The analysis is also done for all combinations of two parameters in order to find the combination with the largest effect. The Sobol total for pairs had the highest value for the combination of energy release rate and area of opening, which explains 96% of the uncertainty. After thermal penetration, the energy release rate is still the most important parameter, but now only explains 49% of the variation. The second parameter is the thickness of the surface material, which explains 43%.
基金The National Key Fundamental Research FundGrant number:9732003C8615700+1 种基金The National Natural Science Fund of ChinaGrant number:20376068
文摘Indomethacin has been encapsulated with polyelectrolyte multilayers for controlled release. Gelatin and alginate were alternatively deposited on indomethacin microcrystals. The released amount of indomethacin from coated microcrystals in pH6. 8 phosphate buffer solution (PBS) was measured with a UV spectrophometer. The polyelectrolyte multilayer capsule thickness was proved to control the release rate. The effects of osmotic pressure existed during the release process of indomethacin from microcapsules coated by (gelatin/alginate) 4.
基金Project supported by the National Key Research and Development Program of China(No.2018YFD0400305)the Modern Agro-industry Technology Research System of China(No.CARS-40-K26)the“One Belt and One Road”International Science and Technology Cooperation Program of Zhejiang,China(No.2019C04022)。
文摘Immunoglobulin Y(Ig Y)is an effective orally administered antibody used to protect against various intestinal pathogens,but which cannot tolerate the acidic gastric environment.In this study,Ig Y was microencapsulated by alginate(ALG)and coated with chitooligosaccharide(COS).A response surface methodology was used to optimize the formulation,and a simulated gastrointestinal(GI)digestion(SGID)system to evaluate the controlled release of microencapsulated Ig Y.The microcapsule formulation was optimized as an ALG concentration of 1.56%(15.6 g/L),COS level of 0.61%(6.1 g/L),and Ig Y/ALG ratio of 62.44%(mass ratio).The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%,a loading capacity of 33.75%,and an average particle size of 588.75μm.Under this optimum formulation,the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface,and thus the GI release rate of encapsulated Ig Y was significantly reduced.The release of encapsulated Ig Y during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions,respectively.The microcapsule also allowed the Ig Y to retain 84.37%immune-activity after 4 h simulated GI digestion,significantly higher than that for unprotected Ig Y(5.33%).This approach could provide an efficient way to preserve Ig Y and improve its performance in the GI tract.