期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
中学校园女足实施“混合训练”模式的可行性研究 被引量:1
1
作者 陈俊辉 邓景怡 +3 位作者 庞观弟 刘勇 黄明函 陈叁 《体育风尚》 2017年第3期10-13,共4页
随着世界经济的发展,人们对足球运动越来越重视。尤其近年来,随着足球运动的普及,我国青少年足球运动也快速发展,但由于受社会环境、管理体制、训练水平,训练方法等因素的影响,我国青少年足球的竞技水平并不高,尤其是校园女足的发展更... 随着世界经济的发展,人们对足球运动越来越重视。尤其近年来,随着足球运动的普及,我国青少年足球运动也快速发展,但由于受社会环境、管理体制、训练水平,训练方法等因素的影响,我国青少年足球的竞技水平并不高,尤其是校园女足的发展更加滞后。由于观念上的差异以及一些现实因素的影响,中学校园女足的发展现状不容乐观。为了让越来越多的女孩子参与到足球运动中,更有效地掌握足球技术、战术,提升校园足球的竞技实力,本文提出在校园中对女足实行'混合训练'模式,并通过查阅文献资料、问卷调查、对比、定点实践等方法对中学校园女足实施'混合训练'模式进行研究,论证了该模式实施的可行性。 展开更多
关键词 中学女足 “混合训练”模式 可行性
下载PDF
Sub-pixel mapping method based on BP neural network 被引量:1
2
作者 李娇 王立国 +1 位作者 张晔 谷延锋 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期279-283,共5页
A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the rel... A new sub-pixel mapping method based on BP neural network is proposed in order to determine the spatial distribution of class components in each mixed pixel.The network was used to train a model that describes the relationship between spatial distribution of target components in mixed pixel and its neighboring information.Then the sub-pixel scaled target could be predicted by the trained model.In order to improve the performance of BP network,BP learning algorithm with momentum was employed.The experiments were conducted both on synthetic images and on hyperspectral imagery(HSI).The results prove that this method is capable of estimating land covers fairly accurately and has a great superiority over some other sub-pixel mapping methods in terms of computational complexity. 展开更多
关键词 sub-pixel mapping BP neural network BP learning algorithm with momentum
下载PDF
A new constrained maximum margin approach to discriminative learning of Bayesian classifiers 被引量:1
3
作者 Ke GUO Xia-bi LIU +2 位作者 Lun-hao GUO Zong-jie LI Zeng-min GENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第5期639-650,共12页
We propose a novel discriminative learning approach for Bayesian pattern classification, called 'constrained maximum margin (CMM)'. We define the margin between two classes as the difference between the minimum de... We propose a novel discriminative learning approach for Bayesian pattern classification, called 'constrained maximum margin (CMM)'. We define the margin between two classes as the difference between the minimum decision value for positive samples and the maximum decision value for negative samples. The learning problem is to maximize the margin under the con- straint that each training pattern is classified correctly. This nonlinear programming problem is solved using the sequential un- constrained minimization technique. We applied the proposed CMM approach to learn Bayesian classifiers based on Gaussian mixture models, and conducted the experiments on 10 UCI datasets. The performance of our approach was compared with those of the expectation-maximization algorithm, the support vector machine, and other state-of-the-art approaches. The experimental results demonstrated the effectiveness of our approach. 展开更多
关键词 Discriminative learning Statistical modeling Bayesian pattern classifiers Gaussian mixture models UCI datasets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部