Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 m...Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 male, 7 female, average age 59.4±13.2 years) with pathologically diagnosed pancreatic cancer were enrolled. All patients received an abdominal scan using a dual source CT scanner 7 to 31 days before biopsy or surgery. After injection of iodine contrast agent, arterial and pancreatic parenchyma phase were scanned consequently, using a dual-energy scan mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs) in the pancreatic parenchyma phase. A series of derived dual-energy datasets were evaluated including non-liner blending (non-linear blending width 0-500 HU; blending center -500 to 500 HU), mono-energetic (40-190 keV), 100 kVp and 140 kVp. On each datasets, mean CT values of the pancreatic parenchyma and tumor, as well as standard deviation CT values of subcutaneous fat and psoas muscle were measured. Regions of interest of cutaneous fat and major psoas muscle of 100 kVp and 140 kVp images were calculated. Best CNR of subcutaneous fat (CNR F ) and CNR of the major psoas muscle (CNR M ) of non-liner blending and mono-energetic datasets were calculated with the optimal mono-energetic keV setting and the optimal blending center/width setting for the best CNR. One Way ANOVA test was used for comparison of best CNR between different dual-energy derived datasets. Results The best CNR F (4.48±1.29) was obtained from the non-liner blending datasets at blending center -16.6±103.9 HU and blending width 12.3±10.6 HU. The best CNR F (3.28±0.97) was obtained from the mono-energetic datasets at 73.3±4.3 keV. CNR F in the 100 kVp and 140 kVp were 3.02±0.91 and 1.56±0.56 respectively. Using fat as the noise background, all of these images series showed significant differences (P<0.01) except best CNR F of mono-energetic image sets vs. CNR F of 100 kVp image (P=0.460). Similar results were found using muscle as the noise background (mono-energetic image vs. 100 kVp image: P=0.246; mono-energetic image vs. non-liner blending image: P=0.044; others: P<0.01). Conclusion Compared with mono-energetic datasets and low kVp datasets, non-linear blending image at automatically chosen blending width/window provides better tumor to the pancreas CNR, which might be beneficial for better detection of pancreatic tumors.展开更多
In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two...In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.展开更多
To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopte...To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.展开更多
The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Po...The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Polymeric Ferric Silicate Sulfate (PFSiS). Their coagulation effect on micro-polluted water was compared with the poly ferric choride (PFC) saled in the market. The results showed that turbidity, organic matter, total phosphorus, total nitrogen removal rate ofPFSiC, PFSiS coagulant were better than PFC on micro-polluted water treatment at the same dosage. The coagulation effect of PFSiC was the best. The surface morphology of three coagulants was observed by scanning electron microscopy (SEM), and the coagulation mechanism was discussed preliminarily.展开更多
Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction r...Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.展开更多
Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previ...Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modem point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.展开更多
Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics sa...Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.展开更多
The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as pr...The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as promising nanomaterials for targeted prostate cancer treatment. In the present study, Chitosan/poly (vinyl alcohol) (Cs/PVA) blend was synthesized by gamma radiation which could behave a nanoreactor for silver (Ag) and gold (Au) nanoparticle with promising anticancer applications. (Cs/PVA/Ag) and (Cs/PVA/Au) nanocomposites were confirmed by SEM (scanning electron microscope) and TEM (transmission electron microscope) analysis. The swelling properties have been investigated as a function of time and pH. The anti-cancer activity of the prepared nanocomposites was demonstrated in prostatic cancer cell line. It has a significant effect against prostatic cancer. However, metal nanoparticles have shown a good experimental success in the field of nanomedicine especially in cancer treatment, which has always been an area of high concern. The collaboration of biomedical research in the identification and characterization of biomedical strategies using the interesting metal nanocomposite will impact the future nanomedicine greatly.展开更多
Applying ontology to describe resource metadata richly in the peer-to-peer environment has become current research trend. In this semantic peer-to-peer environment, indexing semantic element of resource description to...Applying ontology to describe resource metadata richly in the peer-to-peer environment has become current research trend. In this semantic peer-to-peer environment, indexing semantic element of resource description to support efficient resource location is a difficult and challenging problem. This paper provided a hybrid indexing architecture, which combines local indexing and global indexing. It uses community strategy and semantic routing strategy to organize key layer metadata element and uses DHT (distributed hash table) to index extensional layer metadata element. Compared with related system, this approach is more efficient in resource location and more scalable.展开更多
This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose...This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another t...The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another test via digital scanner. In both of the tests, the images were processed using techniques of mathematical morphology and pixel processing. For both NDT, it was used concrete samples with 20-30 MPa of compressive strength. The results for the porosity were compared with results obtained by the standard test proposed by NBR (Norma Brasileira) 9778 (2005) showing the compatibility between two studied methods and pattern method.展开更多
In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showe...In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showed an excellent electro activity and reversibility towards the oxidation of these isomers at different conditions. HQ and CT showed one defined oxidation peak and one defined reduction peak while RS showed one defined oxidation peak. These isomers were determined also in their binary and tertiary mixtures. The calibration curves for CT, HQ and RS were obtained in the ranges of 5 × 10-6 to 1 × 10-3 mol.dm-3, 5 × 10-6 to 5 × 10-4mol.dm-3 and 1 × 10-5 to 1× 10-3 mol.dm-3, respectively. The detection limits were 9 ×10-7, 3 × 10-7, 6 × 10-6 mol.dm3 for CT, HQ and RS, respectively. At the optimal experimental conditions, these isomers were determined in different water samples. Also, the removal of catechol from aqueous solution by adsorption on activated charcoal and alumina was studied. After 24 h, 88.7% and 65.9% of catechol was removed using charcoal and alumina, respectively.展开更多
The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to gr...The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to grind these constituents. The program was arranged to determine the effect of cycles' number, superplasticizer type and dosage, silica fume dosage and condition, and gravel to sand ratio on properties of concrete. Naphthalene sulphonated formaldehyde (NSF) superplasticizers in the forms of liquid and powdered were used. Silica fume may be grinded with the other constituents (grinded), or added to concrete mixer (normal). The water/cement (w/c) ratio varied from 0.35 to 0.55 to achieve a constant slump (50-90 mm). Slumps, bulk density and mechanical properties of concrete were measured. Scanning electron microscope (SEM) was also used to show the differences between traditional and superplasticized concrete. The results showed that grinding the mixture enhances fresh and hardened concrete properties. It is also observed that grinding the mixture for 500 cycles is more effective than other numbers of grinding. In addition, superplasticized concrete exhibits compressive strength higher than traditional one at varied ages. Moreover, using powdered superplasticizer has a remarkable effect on enhancing concrete properties rather than using it in a liquid form. A dosage of 1% by weight of cement gave the highest results of compressive strength. Silica fume has an essential role in improving concrete strength and durability since it acts as very efficient void filler and as a super pozzolana. SEM observations illustrate that grinding the mixture enhances transition zone (TZ) properties and makes it denser. On the other hand, grinded mixture can be packaged in bags and transported for use in crowded cities, and so, enhances quality control, since the only requirement to obtain superplasticized concrete is to add water and gravel. This technique has many benefits such as; saving cement, labor and noise, high quality control, and enhancing concrete permeability and durability. There are many fields of application of superplasticized concrete such as; in locations which are not easily accessible by ordinary concreting techniques, in repairing and strengthen, thin coating, and for small projects when ready mix supply is not feasible.展开更多
In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fi...In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.展开更多
Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes...Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.展开更多
In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η...In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η′ mixingschemes,the quark-flavor mixing scheme and the singlet-octet mixing scheme,we find that the calculated branchingratios agree well with the currently available experimental upper limits.We also consider the so called 'f_D_s puzzle',byusing two groups of parameters about the D_s^((*)) meson decay constants,that are f_D_s = 241 MeV,f_D_s~* = 272 MeV andf_D_s = 274 MeV,f_D_s~* = 312 MeV,to calculate the branching ratios for the considered decays.We find that the resultschange 30% by using these two different kinds of paramters.展开更多
This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful me...This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.展开更多
Polypropylene(PP)with different contents of the second generation hyperbranched polyester(HBP)is prepared by melt blending method.The non-isothermal crystallization kinetics of PP and PP/HBP blends is investigated und...Polypropylene(PP)with different contents of the second generation hyperbranched polyester(HBP)is prepared by melt blending method.The non-isothermal crystallization kinetics of PP and PP/HBP blends is investigated under differential scanning calorimetry(DSC).The Mo equation is used to analyze the DSC data.The results show that the Mo theory is suitable for crystallization kinetics of the blends.Fast cooling rate is not good for crystallizing and nucleating.The values of half crystallization time(t1/2),crystallization enthalpy(ΔHc)and temperature range(ΔT)of PP/HBP blends decrease when HBP is added.The required cooling rate of PP is higher than that of PP/HBP blends in order to reach the same relative crystallinity.Crystallization rate increases with the addition of HBP.The crystallization rate reaches a maximum when the content of HBP is 5%.In addition,the activation energies of PP and PP/HBP blends are calculated by Kissinger equation,revealing that the content of HBP has a little effect on the crystallization activation energy.展开更多
文摘Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 male, 7 female, average age 59.4±13.2 years) with pathologically diagnosed pancreatic cancer were enrolled. All patients received an abdominal scan using a dual source CT scanner 7 to 31 days before biopsy or surgery. After injection of iodine contrast agent, arterial and pancreatic parenchyma phase were scanned consequently, using a dual-energy scan mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs) in the pancreatic parenchyma phase. A series of derived dual-energy datasets were evaluated including non-liner blending (non-linear blending width 0-500 HU; blending center -500 to 500 HU), mono-energetic (40-190 keV), 100 kVp and 140 kVp. On each datasets, mean CT values of the pancreatic parenchyma and tumor, as well as standard deviation CT values of subcutaneous fat and psoas muscle were measured. Regions of interest of cutaneous fat and major psoas muscle of 100 kVp and 140 kVp images were calculated. Best CNR of subcutaneous fat (CNR F ) and CNR of the major psoas muscle (CNR M ) of non-liner blending and mono-energetic datasets were calculated with the optimal mono-energetic keV setting and the optimal blending center/width setting for the best CNR. One Way ANOVA test was used for comparison of best CNR between different dual-energy derived datasets. Results The best CNR F (4.48±1.29) was obtained from the non-liner blending datasets at blending center -16.6±103.9 HU and blending width 12.3±10.6 HU. The best CNR F (3.28±0.97) was obtained from the mono-energetic datasets at 73.3±4.3 keV. CNR F in the 100 kVp and 140 kVp were 3.02±0.91 and 1.56±0.56 respectively. Using fat as the noise background, all of these images series showed significant differences (P<0.01) except best CNR F of mono-energetic image sets vs. CNR F of 100 kVp image (P=0.460). Similar results were found using muscle as the noise background (mono-energetic image vs. 100 kVp image: P=0.246; mono-energetic image vs. non-liner blending image: P=0.044; others: P<0.01). Conclusion Compared with mono-energetic datasets and low kVp datasets, non-linear blending image at automatically chosen blending width/window provides better tumor to the pancreas CNR, which might be beneficial for better detection of pancreatic tumors.
基金supported by the National Basic Research Program of China ("973" Program, No. 2012CB720302)the National Key Research and Development Program of China (No 2016YFF0102503)
文摘In this study, we designed and synthesized a novel battery-type electrode featuring three-dimensional(3D) hierarchical ZnO@Ni_xCo_(1-x)(OH)_y core/shell nanowire/nanosheet arrays arranged on Nifoam substrate via a two-step protocol including a wet chemical process followed by electro-deposition. We then characterized its composition, structure and surface morphology by X-ray diff raction, energy-dispersive X-ray spectrometry(EDS), X-ray photoelectron spectroscopy, scanning electron microscopy(SEM), transmission electron microscopy, EDS elemental mapping. Our electrochemical measurements show that the ZnO@Ni_(0.67)Co_(0.33)(OH)_y electrode material exhibited a noticeably high specific capacity of as much as 255(mA ·h)/g at 1 A/g. Additionally, it demonstrated a superior rate capability, as well as an excellent cycling stability with 81.6% capacity retention over 2000 cycles at 5 A/g. This sample delivered a high energy density of 64 W·h/kg and a power density of 250 W/kg at a current density of 1 A/g. With such remarkable electrochemical properties, we expect the 3D hierarchical hybrid electrode material presented in this work to have promising applications for the next generation of energy storage systems.
基金Supported by Tianjin Natural Science Foundation (No.06YFJMJC05900)Science and Technology Key Project of Hebei Province (No.05213810)
文摘To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.
文摘The sodium silicate, ferric chloride, ferrous sulfate, sodium chlorate and other common inorganic materials were used to synthesize two new poly silicate iron coagulants: Polysilicate Ferric Chloride (PFSiC) and Polymeric Ferric Silicate Sulfate (PFSiS). Their coagulation effect on micro-polluted water was compared with the poly ferric choride (PFC) saled in the market. The results showed that turbidity, organic matter, total phosphorus, total nitrogen removal rate ofPFSiC, PFSiS coagulant were better than PFC on micro-polluted water treatment at the same dosage. The coagulation effect of PFSiC was the best. The surface morphology of three coagulants was observed by scanning electron microscopy (SEM), and the coagulation mechanism was discussed preliminarily.
基金Project(51374248) supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by Program for New Century Excellent Talents in University,China+1 种基金Project(2012AA061501) supported by the National High Technology Research and Development Program of ChinaProject(20120162120010) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.
文摘Many graphics and computer-aided design applications require that the polygonal meshes used in geometric computing have the properties of not only 2-manifold but also are orientable. In this paper, by collecting previous work scattered in the topology and geometry literature, we rigorously present a theoretical basis for orientable polygonal surface representation from a modem point of view. Based on the presented basis, we propose a new combinatorial data structure that can guarantee the property of orientable 2-manifolds and is primal/dual efficient. Comparisons with other widely used data structures are also presented in terms of time and space efficiency.
基金Project(50902061)supported by the National Natural Science Foundation of ChinaProject(2011-22)supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University,China+3 种基金Project(20100471380)supported by the China Postdoctoral Science FoundationProject(J50102)supported by the Leading Academic Discipline Program of Shanghai Municipal Education Commission,ChinaProject(10KJD430002)supported by the Universities Natural Science Research Program of Jiangsu Province,ChinaProject(2010002)supported by the Jiangsu University Undergraduate Practice-Innovation Training Program,China
文摘Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.
文摘The application of nanotechnology in various fields of science has earned a great concern over the past decades. The natural products and surface-modified polymers and metallic nanoparticles (NPs) have evolved as promising nanomaterials for targeted prostate cancer treatment. In the present study, Chitosan/poly (vinyl alcohol) (Cs/PVA) blend was synthesized by gamma radiation which could behave a nanoreactor for silver (Ag) and gold (Au) nanoparticle with promising anticancer applications. (Cs/PVA/Ag) and (Cs/PVA/Au) nanocomposites were confirmed by SEM (scanning electron microscope) and TEM (transmission electron microscope) analysis. The swelling properties have been investigated as a function of time and pH. The anti-cancer activity of the prepared nanocomposites was demonstrated in prostatic cancer cell line. It has a significant effect against prostatic cancer. However, metal nanoparticles have shown a good experimental success in the field of nanomedicine especially in cancer treatment, which has always been an area of high concern. The collaboration of biomedical research in the identification and characterization of biomedical strategies using the interesting metal nanocomposite will impact the future nanomedicine greatly.
文摘Applying ontology to describe resource metadata richly in the peer-to-peer environment has become current research trend. In this semantic peer-to-peer environment, indexing semantic element of resource description to support efficient resource location is a difficult and challenging problem. This paper provided a hybrid indexing architecture, which combines local indexing and global indexing. It uses community strategy and semantic routing strategy to organize key layer metadata element and uses DHT (distributed hash table) to index extensional layer metadata element. Compared with related system, this approach is more efficient in resource location and more scalable.
文摘This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
文摘The aim of this work is to determine the porosity of concrete by means of two NDT (non-destructive testing) using digital images. In one test, the images were obtained through X-ray microtomography and for another test via digital scanner. In both of the tests, the images were processed using techniques of mathematical morphology and pixel processing. For both NDT, it was used concrete samples with 20-30 MPa of compressive strength. The results for the porosity were compared with results obtained by the standard test proposed by NBR (Norma Brasileira) 9778 (2005) showing the compatibility between two studied methods and pattern method.
文摘In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showed an excellent electro activity and reversibility towards the oxidation of these isomers at different conditions. HQ and CT showed one defined oxidation peak and one defined reduction peak while RS showed one defined oxidation peak. These isomers were determined also in their binary and tertiary mixtures. The calibration curves for CT, HQ and RS were obtained in the ranges of 5 × 10-6 to 1 × 10-3 mol.dm-3, 5 × 10-6 to 5 × 10-4mol.dm-3 and 1 × 10-5 to 1× 10-3 mol.dm-3, respectively. The detection limits were 9 ×10-7, 3 × 10-7, 6 × 10-6 mol.dm3 for CT, HQ and RS, respectively. At the optimal experimental conditions, these isomers were determined in different water samples. Also, the removal of catechol from aqueous solution by adsorption on activated charcoal and alumina was studied. After 24 h, 88.7% and 65.9% of catechol was removed using charcoal and alumina, respectively.
文摘The objective of this research is to study the effect of grinding powdered superplasticizer, Portland cement, sand, and silica fume on the properties of fresh and hardened concrete. Lose Angeles Machine was used to grind these constituents. The program was arranged to determine the effect of cycles' number, superplasticizer type and dosage, silica fume dosage and condition, and gravel to sand ratio on properties of concrete. Naphthalene sulphonated formaldehyde (NSF) superplasticizers in the forms of liquid and powdered were used. Silica fume may be grinded with the other constituents (grinded), or added to concrete mixer (normal). The water/cement (w/c) ratio varied from 0.35 to 0.55 to achieve a constant slump (50-90 mm). Slumps, bulk density and mechanical properties of concrete were measured. Scanning electron microscope (SEM) was also used to show the differences between traditional and superplasticized concrete. The results showed that grinding the mixture enhances fresh and hardened concrete properties. It is also observed that grinding the mixture for 500 cycles is more effective than other numbers of grinding. In addition, superplasticized concrete exhibits compressive strength higher than traditional one at varied ages. Moreover, using powdered superplasticizer has a remarkable effect on enhancing concrete properties rather than using it in a liquid form. A dosage of 1% by weight of cement gave the highest results of compressive strength. Silica fume has an essential role in improving concrete strength and durability since it acts as very efficient void filler and as a super pozzolana. SEM observations illustrate that grinding the mixture enhances transition zone (TZ) properties and makes it denser. On the other hand, grinded mixture can be packaged in bags and transported for use in crowded cities, and so, enhances quality control, since the only requirement to obtain superplasticized concrete is to add water and gravel. This technique has many benefits such as; saving cement, labor and noise, high quality control, and enhancing concrete permeability and durability. There are many fields of application of superplasticized concrete such as; in locations which are not easily accessible by ordinary concreting techniques, in repairing and strengthen, thin coating, and for small projects when ready mix supply is not feasible.
基金Project(51038004) supported by the National Natural Science Foundation of China
文摘In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.
基金Supported by the National Natural Science Foundation of China(21776217,21506160)Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06400)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars(48)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Nanostructured zeolitic imidazolate frameworks(ZIF-8) was incorporated into the mixture of poly(ethylene glycol) methyl ether acrylate(PEGMEA) and pentaerythritol triacrylate(PETA) to synthesize mixed matrix membranes(MMMs) by in situ polymerization for CO_2/CH_4 separation. The solvent-free polymerization between PEGMEA and PETA was induced by UV light with 1-hydroxylcyclohexyl phenyl ketone as initiator. The chemical structural characterization was performed by Fourier transform infrared spectroscopy. The morphology was characterized by scanning electron microscope. The average chain-to-chain distance of the polymer chains in MMMs was investigated by X-ray diffraction. The thermal property was evaluated by differential scanning calorimetry. The CH_4 and CO_2 gas transport properties of MMMs are reported. The relationship between gas permeation–separation performances or physical properties and ZIF-8 loading is also discussed. However, the permeation–separation performance was not improved in Robeson upper bound plot compared with original polymer membrane as predicted. The significant partial pore blockage and polymer rigidification effect around the ZIFs confirmed by the increase in glass temperature and the decrease in the d-spacing, were mainly responsible for the failure in performance improvement, which offset the high diffusion induced by porous ZIF-8.
文摘In this paper,we calculate the branching ratios for B^+→D_s^+η,B^+→D_s^+η′,B^+→D_s^(*+)η and B^+→D_s^(*+)η′decays by employing the perturbative QCD (pQCD) factorization approach.Under the two kinds of η-η′ mixingschemes,the quark-flavor mixing scheme and the singlet-octet mixing scheme,we find that the calculated branchingratios agree well with the currently available experimental upper limits.We also consider the so called 'f_D_s puzzle',byusing two groups of parameters about the D_s^((*)) meson decay constants,that are f_D_s = 241 MeV,f_D_s~* = 272 MeV andf_D_s = 274 MeV,f_D_s~* = 312 MeV,to calculate the branching ratios for the considered decays.We find that the resultschange 30% by using these two different kinds of paramters.
文摘This review work explains some of the most important techniques to detect the occurrence of magma mixing phenomena in the volcanic rocks by using SEM (scanning electron microscope). In particular, the most useful methods related to the different types of mixing are reviewed: complete mixing (blending) or incomplete mixing (mingling). For blending, backscattered electron images and EDS (energy dispersive spectroscopy) are the most accurate methods: an example taken from a sample of ash of the 2007 Stromboli volcano eruption was used. For mingling, the best method is given by X-ray elemental mapping (in particular of Ca and Si), as explained through the example taken from a sample of the 2003 explosive eruption of Soufriere Hills volcano. The aim of this work was to establish whereas would be useful to use backscattered eletron images, EDS, or X-ray elemental mapping techniques, according to the different types of mixing that occur very often in magmatic systems.
基金Supported by the Youths Foundation of Wuhan Institute of Technology(Q200902)the Graduate Innovative Fund of Wuhan Institute of Technology(CX201101)
文摘Polypropylene(PP)with different contents of the second generation hyperbranched polyester(HBP)is prepared by melt blending method.The non-isothermal crystallization kinetics of PP and PP/HBP blends is investigated under differential scanning calorimetry(DSC).The Mo equation is used to analyze the DSC data.The results show that the Mo theory is suitable for crystallization kinetics of the blends.Fast cooling rate is not good for crystallizing and nucleating.The values of half crystallization time(t1/2),crystallization enthalpy(ΔHc)and temperature range(ΔT)of PP/HBP blends decrease when HBP is added.The required cooling rate of PP is higher than that of PP/HBP blends in order to reach the same relative crystallinity.Crystallization rate increases with the addition of HBP.The crystallization rate reaches a maximum when the content of HBP is 5%.In addition,the activation energies of PP and PP/HBP blends are calculated by Kissinger equation,revealing that the content of HBP has a little effect on the crystallization activation energy.