Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybr...Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.展开更多
An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy...An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy)]2+3 and polypyrrole ( MWNTs-Ru (bpy) ]2+3 -PPy ) was prepared to adsorb the ssDNA by electrostatic interactions. Then, the ssDNA recognized the gold nanoparticles (AuNPs)-labeled p53 gene and produced the AuNPs-dsDNA electrode with the AuNPs layer. The AuNPs layer adsorbed the ADH molecules for producing the ECL signal. Thus, the biosensor was based on coupling enzyme substrate reaction with solid-state ECL detection, and it displayed good sensitivity and specificity. The detection limit of the wild type p53 sequence (wtp53) is as low as 0. 1 pmol/L and the discrimination is up to 57. 1% between the wtp53 and the muted type p53 sequence (mtp53). The amenability of this method to the analyses of p53 from normal and cancer cell lysates is demonstrated. The signal of wtp53 in the MGC-803 gastric cancer cell lysates turns out to be about 61.8% that of the wtp53 in the GES-1 normal gastric mucosal cell lysates, and the concentration of the wtp53 is found to decrease about 59 times. The method is highly complementary to enzyme-linked immunosorbent assay (ELISA), and it holds promise for the diagnosis and management of cancer.展开更多
In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of ...In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.展开更多
In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is es...In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete.展开更多
In order to determine whether polyphosphoric acid (PPA) can partially or completely substitute styrene-butadiene- styrene (SBS) modifier while it does not adversely affect the resistance to thermal cracking of the...In order to determine whether polyphosphoric acid (PPA) can partially or completely substitute styrene-butadiene- styrene (SBS) modifier while it does not adversely affect the resistance to thermal cracking of the asphalt mixture, the low- temperature fracture properties of the PPA modified mixtures are evaluated and compared to the SBS modified mixtures. First, laboratory compacted test samples were tested by the indirect tensile test (IDT) and the newly developed fracture testing protocol, named as disk-shaped compact tension (DCT). Then, the effects of the test temperature and air-void ratio on the low-temperature fracture properties of asphalt mixtures were analyzed. The results show that the fracture resistance of the PPA modified mixtures is worse than that of the SBS modified mixtures. However, for those modified mixtures that use the PPA substituting part of the SBS modifier, a relatively low-temperature fracture resistance can be obtained compared with the mixture only using the SBS modifier.展开更多
Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market appli...Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market application We enhance water stability by post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate (PM- MA) blend films. Through blending process without any cleaning of nanocrystals, crystalline hybrid organic-inorganic perovs-kite nanocrystals were incorporated into PMMA matrix with well-dispersion Passivation of PMMA on the surface of the per-ovskite nanocrystals results in decreased traps and a long photoluminescence (PL) lifetime despite the bromine vacancies in the crystal lattice. Moreover, such color purity and inherent high transmittance for fluorescence emission of perovskite nanocrystals will endow the films with promising potentials in diverse practice photonic applications.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein p...A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.展开更多
The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yie...The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yield. Effects of different feedingstrategies of propionic acid on the production of P(3HB-co-3HV) were investigated. A decline ofspecific synthesis rate of copolymer and the yield of 3HV unit from propionic acid were observed dueto the propionic acid accumulation in culture broth when the feeding solution with highP/G(propionic acid to glucose) ratio was employed. It was further confirmed by controlling propionicacid concentration at a low level in the separate feeding of propionic acid. An optimal feedingstrategy was demonstrated to reduce the propionic acid accumulation. The cell concentration,P(3HB-co-3HV) productivity and 3HV unit fraction reached to 163.9kg·m^(-3), 1.8kg·m^(-3)·h^(-1),and 10.6%(by mass), respectively, resulting in a yield of 0.33g HV per g propionic acid.展开更多
The viability of polyvinyl acetate (PVA) membranes blended with acrylic ester-co-acrylic acid copolymers (AE-co-AA), for ethanol dehydration was examined. The effects of the operating temperature on the permeate flux ...The viability of polyvinyl acetate (PVA) membranes blended with acrylic ester-co-acrylic acid copolymers (AE-co-AA), for ethanol dehydration was examined. The effects of the operating temperature on the permeate flux and separation factor of the membranes were investigated. The pervaporation separation characteristics of PVA/(AE-co-AA) membranes were related to the blend ratio, the dose of crosslinking agents and the operating temperature.展开更多
Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregat...Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-展开更多
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal...An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.展开更多
In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simpl...In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.展开更多
A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM charac...A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10~5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H_2/CO_2, H_2/N_2 and H_2/CH_4, respectively, and a permeance of 17.37× 10^(-6) mol/(m^2·s·Pa) for H_2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H_2 separation.展开更多
Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in ...Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.展开更多
Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twiste...Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twisted-tape elements which vary in twist ratio and rotation angle. Space ratio also has an important effect on the characteristics. For comparison, experiments in a smooth circular tube and a converging-diverging (CD) tube with-out twisted-tapes were carried out. The results show that the twisted-tape with twist ratio y=4.72 and rotation angle θ=180° has the best performance among the four types of twisted-tapes presented in this paper. At Reynolds number ranging from 3400 to 20000, when space ratio s=48.6, the heat transfer efficiency index, which increases as the Reynolds number increases, is 0.85-1.21 and 1.07-1.15 compared to that of a smooth circular tube and a CD tube without twisted-tape inserts, respectively.展开更多
To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule...To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.展开更多
It is difficult for polyethylene terephthalate (PET) to degrade,which caused severe pollution.In this work,polylactic acid (PLA) was introduced to improve the degradation of PET.PET/PLA was synthesized by extrusio...It is difficult for polyethylene terephthalate (PET) to degrade,which caused severe pollution.In this work,polylactic acid (PLA) was introduced to improve the degradation of PET.PET/PLA was synthesized by extrusion blending.The thermal,crystalline and mechanical properties of blends were investigated with TGA,DSC,WAXD and universal testing machine.The degradation of the blends in soil,acid and alkaline buffer solutions was assessed,respectively.It was found that the introduction of a little PLA promoted crystallization of PET during injection molding process.The starting decomposition temperature lowered from 412.1 ℃ of pure PET to 330.4 ℃ at 50% PLA content,tensile and bending strength of blends gradually decreased with the PLA content increasing,while the degradation rate improved.Alkaline environment was most beneficial for blends to degrade.The degradation mechanism was discussed.展开更多
This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive str...This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.展开更多
基金National Natural Science Foundation of China(No.51875099)。
文摘Polymer matrix types of fiber hybrid composites are key factors to improve ballistic impact damage tolerances.Here we report ballistic penetration damages of Kevlar/ultra-high molecular weight polyethylene(UHMWPE)hybrid composites with thermoplastic polyurethane(PU)matrix.The hybrid composites were penetrated by fragment-simulating projectiles(FSPs)using an air gun impact system.The effects of stacking sequences on the ballistic performance of hybrid composites were analyzed.Two types of specific energy absorption(the energy absorption per unit area density and the energy absorption per unit thickness)were investigated.It was found that the main damage modes of PU hybrid composites were fiber breakage,matrix damage,fiber pullout and interlayer delamination.The instantaneous deformation could not be used as a reference index for evaluating the ballistic performance of the target plate.The energy absorption process of the PU hybrid composites showed a nonlinear pattern.The hybrid structure affected the specific energy absorption of the materials.
基金The National Basic Research Program of China(973 Program)(No.2010CB732404,2011CB933404)the National Natural Science Foundation of China(No.81172697,81170492,81001244)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092120055)the Foundation of the State Key Laboratory of Bioelectronics of Southeast University
文摘An alcohol dehydrogenase (ADH)-coexisted solidstate electrochemiluminescence (ECL) biosensor for sensitive detection of the p53 gene was developed. The electrode modified by multiwalled carbon nanotubes, Ru(bpy)]2+3 and polypyrrole ( MWNTs-Ru (bpy) ]2+3 -PPy ) was prepared to adsorb the ssDNA by electrostatic interactions. Then, the ssDNA recognized the gold nanoparticles (AuNPs)-labeled p53 gene and produced the AuNPs-dsDNA electrode with the AuNPs layer. The AuNPs layer adsorbed the ADH molecules for producing the ECL signal. Thus, the biosensor was based on coupling enzyme substrate reaction with solid-state ECL detection, and it displayed good sensitivity and specificity. The detection limit of the wild type p53 sequence (wtp53) is as low as 0. 1 pmol/L and the discrimination is up to 57. 1% between the wtp53 and the muted type p53 sequence (mtp53). The amenability of this method to the analyses of p53 from normal and cancer cell lysates is demonstrated. The signal of wtp53 in the MGC-803 gastric cancer cell lysates turns out to be about 61.8% that of the wtp53 in the GES-1 normal gastric mucosal cell lysates, and the concentration of the wtp53 is found to decrease about 59 times. The method is highly complementary to enzyme-linked immunosorbent assay (ELISA), and it holds promise for the diagnosis and management of cancer.
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.
基金The Open Research Fund of Key Laboratory of Highway Engineering of Sichuan Province of Southw est Jiaotong University (No.LHTE002201102)
文摘In order to investigate the fatigue behavior of asphalt concrete, a new numerical approach based on a bi-linear cohesive zone model (CZM) is developed. Integrated with the CZM, a fatigue damage evolution model is established to indicate the gradual degradation of cohesive properties of asphalt concrete under cyclic loading. Then the model is implemented in the finite element software ABAQUS through a user-defined subroutine. Based on the proposed model, an indirect tensile fatigue test is finally simulated. The fatigue lives obtained through numerical analysis show good agreement with laboratory results. Fatigue damage accumulates in a nonlinear manner during the cyclic loading process and damage initiation phase is the major part of fatigue failure. As the stress ratio increases, the time of the steady damage growth stage decreases significantly. It is found that the proposed fatigue damage evolution model can serve as an accurate and efficient tool for the prediction of fatigue damage of asphalt concrete.
基金The National Natural Science Foundation of China(No.51278060)
文摘In order to determine whether polyphosphoric acid (PPA) can partially or completely substitute styrene-butadiene- styrene (SBS) modifier while it does not adversely affect the resistance to thermal cracking of the asphalt mixture, the low- temperature fracture properties of the PPA modified mixtures are evaluated and compared to the SBS modified mixtures. First, laboratory compacted test samples were tested by the indirect tensile test (IDT) and the newly developed fracture testing protocol, named as disk-shaped compact tension (DCT). Then, the effects of the test temperature and air-void ratio on the low-temperature fracture properties of asphalt mixtures were analyzed. The results show that the fracture resistance of the PPA modified mixtures is worse than that of the SBS modified mixtures. However, for those modified mixtures that use the PPA substituting part of the SBS modifier, a relatively low-temperature fracture resistance can be obtained compared with the mixture only using the SBS modifier.
文摘Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market application We enhance water stability by post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate (PM- MA) blend films. Through blending process without any cleaning of nanocrystals, crystalline hybrid organic-inorganic perovs-kite nanocrystals were incorporated into PMMA matrix with well-dispersion Passivation of PMMA on the surface of the per-ovskite nanocrystals results in decreased traps and a long photoluminescence (PL) lifetime despite the bromine vacancies in the crystal lattice. Moreover, such color purity and inherent high transmittance for fluorescence emission of perovskite nanocrystals will endow the films with promising potentials in diverse practice photonic applications.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
基金Supported by the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).
文摘A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.
文摘The feeding method of propionic acid for production ofpoly(3-hydroxybutyrate-co-3-hydro xyvalerate) [P(3HB-co-3HV)] by fed-batch culture of Ralstoniaeutropha was optimized to achieve high cell density and high 3HV yield. Effects of different feedingstrategies of propionic acid on the production of P(3HB-co-3HV) were investigated. A decline ofspecific synthesis rate of copolymer and the yield of 3HV unit from propionic acid were observed dueto the propionic acid accumulation in culture broth when the feeding solution with highP/G(propionic acid to glucose) ratio was employed. It was further confirmed by controlling propionicacid concentration at a low level in the separate feeding of propionic acid. An optimal feedingstrategy was demonstrated to reduce the propionic acid accumulation. The cell concentration,P(3HB-co-3HV) productivity and 3HV unit fraction reached to 163.9kg·m^(-3), 1.8kg·m^(-3)·h^(-1),and 10.6%(by mass), respectively, resulting in a yield of 0.33g HV per g propionic acid.
文摘The viability of polyvinyl acetate (PVA) membranes blended with acrylic ester-co-acrylic acid copolymers (AE-co-AA), for ethanol dehydration was examined. The effects of the operating temperature on the permeate flux and separation factor of the membranes were investigated. The pervaporation separation characteristics of PVA/(AE-co-AA) membranes were related to the blend ratio, the dose of crosslinking agents and the operating temperature.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA120300,2011AA120302)the National Key Technology Support Program of China(No.2013BAH66F02)
文摘Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-
基金Supported by National 985 Project of China (No.985XK-015).
文摘An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.
文摘In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.
基金Project(21376274)supported by the National Natural Science Foundation ChinaProject(2015BAL04B02)supported by the National Key Technology R&D Program of China
文摘A zeolitic imidazolate hybrid membrane(Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×10~5 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H_2/CO_2, H_2/N_2 and H_2/CH_4, respectively, and a permeance of 17.37× 10^(-6) mol/(m^2·s·Pa) for H_2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H_2 separation.
文摘Reuse of concrete waste, especially in large quantity, can save not only material but also cost for its disposal. This paper presents experiment results on the use of fine and coarse aggregates from concrete waste in geopolymer mortars and concretes. Geopolymeric cement is an inorganic compounds of aluminosilicates synthesized from precursors with high content of silica and alumina activated by alkali silicate solutions. Geopolymer in this experiment was synthesized from fly ash as the precursor and sodium silicate solution as the activator. Hardening of geopolymers was performed by heating the casted paste in an oven at -60~Cfor 3 to 36 hours. Compressive strength of geopolymer pastes and mortars using either fresh or waste fine aggregates were in the range of 19-26 MPa. Hardening time of 3 hours at 60~C followed by leaving the test pieces at room temperature for 7 day before testing results in similar strength to that of mortars cured for 36 hours at 60~C followed by leaving the samples at room temperature for 3 days. It suggests that optimum strength can be achieved by combination of heating time and rest period before testing, i.e the specimens age. Applying mix design with a target strength of 40 MPa, conventional Portland cement concretes using fresh aggregates reached 70% of its target strength at day-7. Compressive strength of geopolymer concretes with waste aggregates was -25 MPa at day-3 while geopolymer concretes with fresh aggregates achieved -39 MPa at day-3. It can be concluded that geopolymer concretes can achieve the target strength in only 3 days. However, the expected reinforcing effect of coarse aggregates in concrete was ineffective if waste coarse aggregates were used as the strength of the concretes did not increase significantly from that of the mortars. On the other hand, waste fine aggregates can be reused for making geopolymer mortars having the same strength as the geopolymer mortars using fresh aggregates.
基金Supported by the State Key Development Program for Basic Research of China (No.G2000263001) and the National Natural Science Foundation of China (No.20776046).
文摘Pressure drop and compound heat transfer characteristics of a converging-diverging tube with evenly spaced twisted-tapes (CD-T tube) have been investigated experimentally. Swirl was generated by evenly spaced twisted-tape elements which vary in twist ratio and rotation angle. Space ratio also has an important effect on the characteristics. For comparison, experiments in a smooth circular tube and a converging-diverging (CD) tube with-out twisted-tapes were carried out. The results show that the twisted-tape with twist ratio y=4.72 and rotation angle θ=180° has the best performance among the four types of twisted-tapes presented in this paper. At Reynolds number ranging from 3400 to 20000, when space ratio s=48.6, the heat transfer efficiency index, which increases as the Reynolds number increases, is 0.85-1.21 and 1.07-1.15 compared to that of a smooth circular tube and a CD tube without twisted-tape inserts, respectively.
文摘To extend the PSRK (predictive Soave-Redlich-Kwong equation of state) model to vapor-liquid equilibria of polymer solutions, a new EOS-gE mixing rule is applied in which the term ∑ xi ln(b/bi) in the PSRK mixing rule for the parameter a, and the combinatorial part in the original universal functional activity coefficient (UNIFAC) model are cancelled. To take into account the free volume contribution to the excess Gibbs energy in polymer solution, a quadratic mixing rule for the cross co-volume bij with an exponent equals to 1/2 is applied[bij1/2= 1/2(bi1/2+bj1/2)]. The literature reported Soave-Redlich-Kwong equation of state (SRK EOS) parameters ofpure polymer are employed. The PSRK model with the modified mixing rule is used to predict the vapor-liquid equilibrium (VLE) of 37 solvent-polymer systems over a large range of temperature and pressure with satisfactory results.
文摘It is difficult for polyethylene terephthalate (PET) to degrade,which caused severe pollution.In this work,polylactic acid (PLA) was introduced to improve the degradation of PET.PET/PLA was synthesized by extrusion blending.The thermal,crystalline and mechanical properties of blends were investigated with TGA,DSC,WAXD and universal testing machine.The degradation of the blends in soil,acid and alkaline buffer solutions was assessed,respectively.It was found that the introduction of a little PLA promoted crystallization of PET during injection molding process.The starting decomposition temperature lowered from 412.1 ℃ of pure PET to 330.4 ℃ at 50% PLA content,tensile and bending strength of blends gradually decreased with the PLA content increasing,while the degradation rate improved.Alkaline environment was most beneficial for blends to degrade.The degradation mechanism was discussed.
文摘This research investigated the water permeability coefficient of fly ash-based geopolymer concrete. The effect of sodium hydroxide (Na(OH)) concentrations and Si/AI ratios on water permeability and compressive strength of geopolymer concretes were studied. The geopolymer concrete were prepared from Mae Moh fly ash with sodium silicate (Na2SiO3) and sodium hydroxide (Na(OH)) solutions. In the first group, concentration of Na(OH) was varied at 8, 10, 12, and 14 molar and the Si/AI ratio was kept constant at 1.98. In the second group, a concentration of Na(OH) was kept constant at 14 molar and the Si/AI ratio was varied at 2.2, 2.4, 2.6, and 2.8. The hardened concretes were air-cured in laboratory. The compressive strength and water permeability were tested at the age of 28 and 60 days. The results showed that compressive strengths of geopolymer concrete significantly increased with the increase of a concentration of Na(OH) and Si/AI ratio. The water permeability coefficients increase with the decrease of compressive strength. In addition, the high reduction of water permeability coefficients with time was found in geopolymer concrete with lower Na(OH) concentration than that higher Na(OH) concentration.