In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theo...In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.展开更多
The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X...The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X is Frechet differentiable if and only if X has B (X)- ANP -I, X is quasi-Frechet differentiable if and only if X has B(X)- ANP -H and X is very smooth if and only if X has B(X)- ANP -Ⅱ. A new local asymptotic-norming property is also introduced, and the relationship among this one and other local asymptotic-norming properties and some topological properties is discussed. In addition, this paper gives a negative answer to the open question raised by Hu and Lin in Bull. Austral. Math. Soc,45,1992.展开更多
文摘In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.
基金National Natural Science Foundation of China(10671118) the Natural Science Foundation of Shanghai Education Committee (06NZ016)
文摘The relationship between some smoothness and weak asymptotic-norming properties of dual Banach space X is studied. The main results are the following. Suppose that X is weakly sequential complete Banach space, then X is Frechet differentiable if and only if X has B (X)- ANP -I, X is quasi-Frechet differentiable if and only if X has B(X)- ANP -H and X is very smooth if and only if X has B(X)- ANP -Ⅱ. A new local asymptotic-norming property is also introduced, and the relationship among this one and other local asymptotic-norming properties and some topological properties is discussed. In addition, this paper gives a negative answer to the open question raised by Hu and Lin in Bull. Austral. Math. Soc,45,1992.