In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with stron...In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with strong hydrophilic surfactant added is a new type of penetration enhancer.展开更多
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
The low-resolution CT scan images obtained from drill core generally struggle with problems such as insufficient pore structure information and incomplete image details.Consequently,predicting the permeability of hete...The low-resolution CT scan images obtained from drill core generally struggle with problems such as insufficient pore structure information and incomplete image details.Consequently,predicting the permeability of heterogeneous reservoir cores relies heavily on high-resolution CT scanning images.However,this approach requires a considerable amount of data and is associated with high costs.To solve this problem,a method for predicting core permeability based on deep learning using CT scan images with diff erent resolutions is proposed in this work.First,the high-resolution CT scans are preprocessed and then cubic subsets are extracted.The permeability of each subset is estimated using the Lattice Boltzmann Method(LBM)and forms the training set for the convolutional neural network(CNN)model.Subsequently,the highresolution images are downsampled to obtain the low-resolution grayscale images.In the comparative analysis of the porosities of diff erent low-resolution images,the low-resolution image with a resolution of 10%of the original image is considered as the test set in this paper.It is found that the permeabilities predicted from the low-resolution images are in good agreement with the values calculated by the LBM.In addition,the test data are compared with the results of the Kozeny-Carman(KC)model and the measured permeability of the whole sample.The results show that the prediction of the permeability of tight carbonate rock based on deep learning using CT scans with diff erent resolutions is reliable.展开更多
AIM:To explore the relationship between retinal exudative changes in neonates and perinatal toxoplasmosis,others,rubella,cytomegalovirus,and herpes simplex virus(TORCH)infections,as well as the characteristics of TORC...AIM:To explore the relationship between retinal exudative changes in neonates and perinatal toxoplasmosis,others,rubella,cytomegalovirus,and herpes simplex virus(TORCH)infections,as well as the characteristics of TORCH infection in neonates with retinal exudative changes.METHODS:Retrospective study.A total of 612 neonates with retinal exudative changes detected during ophthalmic screening in our hospital from May 2019 to March 2023 were selected.TORCH tests were performed on these neonates,and the results were subjected to statistical analysis to determine the infection characteristics.The neonates with retinal exudative changes were grouped by sex and age,the characteristics of TORCH infection were analyzed,and the positive rates were compared.RESULTS:Among the 612 neonates with retinal exudative changes,the highest positive rate was observed for cytomegalovirus(CMV-IgG)(96.7%),followed by rubella virus(RV-IgG)(73.9%).Mixed infections with two or three viruses were also observed,with the highest positive rate for mixed infection of RV-IgG and CMV-IgG reaching 71.2%.There was no statistically significant difference in TORCH infection among neonates of different sex(P>0.05).However,there were statistically significant differences in RV-IgG and CMV-IgM infections with retinal exudative changes among neonates of different age groups(P<0.05).CONCLUSION:Perinatal TORCH infection may be an important factor causing retinal exudative changes in neonates.The differences in various infections are not related to sex but are related to different age groups.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D...The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.展开更多
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th...To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.展开更多
To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in whi...To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in which the outer oil phase was silicone oil and the inner oil phase was solid lipid nanoparticles coated with organic sun-screening agent.Several influencing factors on the formation and stability of the emulsion were analyzed,including inorganic salts,the volume fraction of outer oil phase(silicone oil),and the dosage of W/O emulsifier.The in vitro sunscreen performance,water resistance and skin permeability of different types of sunscreen emulsions were further studied.The results showed that the sunscreen O/W/Si multiple emulsion containing 22.5%silicone oil,2.5%emulsifier and 0.2%NaCl had the best stability under the experimental conditions.The SPF value and water resistance of sunscreen O/W/Si multiple emulsion were slightly higher than those of sunscreen W/O emulsion,but significantly higher than those of sunscreen O/W emulsion.Compared with sunscreen W/O emulsion,the in vitro transdermal permeability of organic sun-screening agent in sunscreen O/W/Si multiple emulsion was reduced by approximately 60%,indicative of higher safety and good application prospect in sunscreen cosmetics.展开更多
Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresea...Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.展开更多
It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The ...It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure in...Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.展开更多
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand...Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.展开更多
To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation ...To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation in clay-bearing sandstones based on Dvorkin's elastic BISQ model. The present model is extended to a wide range of permeabilities (k 〉 0.05 mD) by introducing a dimensionless correction factor for viscoelastic parameters, defined as a function of the permeability and the clay content. We describe the frame's stress-strain relationship of the clay-bearing sandstones by the differential constitutive equations of generalized viscoelasticity and then derive the viscoelastic-wave dynamic equations. With the assumption of a plane-wave solution, we finally yield the phase velocities and the attenuation coefficients by solving the dynamic wave equations in the frequency and wave number domain. The comparison of numerical results and experimental data shows that the generalized viscoelastic BISQ model is applicable for modeling the wave propagation in most of the sandstones mainly bearing kaolinite clay.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
文摘In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with strong hydrophilic surfactant added is a new type of penetration enhancer.
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.
文摘The low-resolution CT scan images obtained from drill core generally struggle with problems such as insufficient pore structure information and incomplete image details.Consequently,predicting the permeability of heterogeneous reservoir cores relies heavily on high-resolution CT scanning images.However,this approach requires a considerable amount of data and is associated with high costs.To solve this problem,a method for predicting core permeability based on deep learning using CT scan images with diff erent resolutions is proposed in this work.First,the high-resolution CT scans are preprocessed and then cubic subsets are extracted.The permeability of each subset is estimated using the Lattice Boltzmann Method(LBM)and forms the training set for the convolutional neural network(CNN)model.Subsequently,the highresolution images are downsampled to obtain the low-resolution grayscale images.In the comparative analysis of the porosities of diff erent low-resolution images,the low-resolution image with a resolution of 10%of the original image is considered as the test set in this paper.It is found that the permeabilities predicted from the low-resolution images are in good agreement with the values calculated by the LBM.In addition,the test data are compared with the results of the Kozeny-Carman(KC)model and the measured permeability of the whole sample.The results show that the prediction of the permeability of tight carbonate rock based on deep learning using CT scans with diff erent resolutions is reliable.
文摘AIM:To explore the relationship between retinal exudative changes in neonates and perinatal toxoplasmosis,others,rubella,cytomegalovirus,and herpes simplex virus(TORCH)infections,as well as the characteristics of TORCH infection in neonates with retinal exudative changes.METHODS:Retrospective study.A total of 612 neonates with retinal exudative changes detected during ophthalmic screening in our hospital from May 2019 to March 2023 were selected.TORCH tests were performed on these neonates,and the results were subjected to statistical analysis to determine the infection characteristics.The neonates with retinal exudative changes were grouped by sex and age,the characteristics of TORCH infection were analyzed,and the positive rates were compared.RESULTS:Among the 612 neonates with retinal exudative changes,the highest positive rate was observed for cytomegalovirus(CMV-IgG)(96.7%),followed by rubella virus(RV-IgG)(73.9%).Mixed infections with two or three viruses were also observed,with the highest positive rate for mixed infection of RV-IgG and CMV-IgG reaching 71.2%.There was no statistically significant difference in TORCH infection among neonates of different sex(P>0.05).However,there were statistically significant differences in RV-IgG and CMV-IgM infections with retinal exudative changes among neonates of different age groups(P<0.05).CONCLUSION:Perinatal TORCH infection may be an important factor causing retinal exudative changes in neonates.The differences in various infections are not related to sex but are related to different age groups.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
基金supports from the National Natural Science Foundation of China(42104110,41974123,42174161,and 12334019)the Natural Science Foundation of Jiangsu Province(BK20210379,BK20200021)+1 种基金the Postdoctoral Science Foundation of China(2022M720989)the Fundamental Research Funds for the Central Universities(B210201032).
文摘The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the Open Fund for Hubei Provincial Key Laboratory of Advanced Aerospace Power Technology,China(No.DLJJ2103007)the Hunan Graduate Research Innovation Project,China(No.CX20220097)。
文摘To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.
文摘To solve the greasiness and irritation risks brought about by organic sun-screening agents in sunscreen emulsions,in this work,a sunscreen O/W/Si multiple emulsion was prepared by two-step emulsification method,in which the outer oil phase was silicone oil and the inner oil phase was solid lipid nanoparticles coated with organic sun-screening agent.Several influencing factors on the formation and stability of the emulsion were analyzed,including inorganic salts,the volume fraction of outer oil phase(silicone oil),and the dosage of W/O emulsifier.The in vitro sunscreen performance,water resistance and skin permeability of different types of sunscreen emulsions were further studied.The results showed that the sunscreen O/W/Si multiple emulsion containing 22.5%silicone oil,2.5%emulsifier and 0.2%NaCl had the best stability under the experimental conditions.The SPF value and water resistance of sunscreen O/W/Si multiple emulsion were slightly higher than those of sunscreen W/O emulsion,but significantly higher than those of sunscreen O/W emulsion.Compared with sunscreen W/O emulsion,the in vitro transdermal permeability of organic sun-screening agent in sunscreen O/W/Si multiple emulsion was reduced by approximately 60%,indicative of higher safety and good application prospect in sunscreen cosmetics.
基金Projects(52178371,52108355,52178321)supported by the National Natural Science Foundation of ChinaProject(202305)supported by the Research Project of Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,China。
文摘Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years.
文摘It aims to investigate the protective effects of sodium hyaluronate,panthenol,Portulaca oleracea L.and Calendula officinalis L.on hyperosmotic dehydration-induced injury of human immortalized keratinocytes(HaCaT).The safety mass concentrations of four raw materials were screened by detecting cell viability,and the secretion of hyaluronic acid(HA)was determined using the ELISA method.The expression of HaCaT barrier function related genes(OVOL1,EREG,TGM1,TGM2,IVL,IRF6,THBS1,CASP14)was detected at the mRNA level to explore the regulatory effect of four raw materials on these genes.The results demonstrate that pretreatment with the four kinds of raw materials could increase the cell viability after hyperosmotic dehydration,promote the secretion of HA,and improve the expression of barrier function related genes after hyperosmotic dehydration,among which panthenol and Calendula officinalis L.are better.The results show that the four raw materials have a certain protective effect on the hyperosmotic dehydration cell model,which provides data support for its application in cosmetics.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Projects(51221001,51275417)supported by the National Natural Science Foundation of ChinaProject(SKLSP201103)supported by the Fund of the State Key Laboratory of Solidification ProcessingProject(B08040)supported by the Introducing Talents of Discipline toUniversities,China
文摘Carbon fiber reinforced aluminum matrix (Cf/Al) composite has many excellent properties, and it has received more and more attention. Two-dimensional (2D) Cf/Al composites were fabricated by vacuum and pressure infiltration, which was an integrated technique and could provide high vacuum and high infiltration pressure. The effect of specific pressure on the infiltration quality of the obtained composites was comparatively evaluated through microstructure observation. The experimental results show that satisfied Cf/Al composites could be fabricated at the specific pressure of 75 MPa. In this case, the preform was infiltrated much more completely by aluminum alloy liquid, and the residual porosity was seldom found. It is found that the ultimate tensile strength of the obtained Cf/Al composite reached maximum at the specific pressure of 75 MPa, which was improved by 138.9% compared with that of matrix alloy.
基金supported by Major National Oil & Gas Specific Project(Grant No.2008ZX05020-001)
文摘Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.
基金supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 40725012)the National Hi-tech Research and Development Program of China(863 Program) (Grant No. 2006AA06Z240)the National Basic Research Program of China (973 program)(Grant No. 2007CB209505).
文摘To simultaneously take into account the Biot-flow mechanism, the squirt-flow mechanism, and the frame-viscoelasticity mechanism, a generalized viscoelastic BISQ (Biot/squirt) model is developed for wave propagation in clay-bearing sandstones based on Dvorkin's elastic BISQ model. The present model is extended to a wide range of permeabilities (k 〉 0.05 mD) by introducing a dimensionless correction factor for viscoelastic parameters, defined as a function of the permeability and the clay content. We describe the frame's stress-strain relationship of the clay-bearing sandstones by the differential constitutive equations of generalized viscoelasticity and then derive the viscoelastic-wave dynamic equations. With the assumption of a plane-wave solution, we finally yield the phase velocities and the attenuation coefficients by solving the dynamic wave equations in the frequency and wave number domain. The comparison of numerical results and experimental data shows that the generalized viscoelastic BISQ model is applicable for modeling the wave propagation in most of the sandstones mainly bearing kaolinite clay.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.