The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to...The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.展开更多
The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic d...The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.展开更多
Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angl...Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angle and decreases receding contact angle, resultingin enhanced hysteresis. It was observed that when Young''s contact angle θ_Y 【 90°, as theroughness of solid surface increased the extent of the decrease in receding contact angle exceededthat of the increase in advancing contact angle. Based on the experimental observations, the conceptof hysteresis tension was introduced to describe the contact angle hysteresis behavior on roughsolid surface. The model provides a thoughtful understanding of the physical nature of contact anglehysteresis, in particular an instructive description of the influence of surface roughness on thehysteresis. The prediction of the model is found in quite good agreement with the experimentalobservation and measurement.展开更多
A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture...Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evapo- ration. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
In order to examine the factors which affect the range of heat transfer in earth surrounding subways, FLAC3D was adopted in this study to analyze these factors, under different conditions, in a systematic manner. When...In order to examine the factors which affect the range of heat transfer in earth surrounding subways, FLAC3D was adopted in this study to analyze these factors, under different conditions, in a systematic manner. When we compare these numerical tests, the results show that the main factors, affecting the heat transfer range are the thermal properties of the surrounding earth, the initial ground temperature and the temperature in the tunnel. The heat transfer coefficient between air and linings has little effect on the temperature distribution around the tunnel. The current results can provide a reference for improving the thermal environment in subways and optimizing the design of subwav ventilation and air conditioning.展开更多
Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfe...Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.展开更多
Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations...Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.展开更多
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi...Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.展开更多
Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy...Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.展开更多
This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equation...This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities.展开更多
Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the...Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.展开更多
The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual inducti...The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.展开更多
By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of...By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of jacket and insulating layer) was established by the authors. With the model, the temperature distribution and the length change in the vessel walls and flat steel ribbons in low temperature are calculated and analyzed. The results show that the flat steel ribbon wound cryogenic high-pressure vessel is simpler in structure, safer and easier to manufacture than those of conventional ones.展开更多
An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presen...An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).展开更多
It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a c...It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a convenient and efficient warming structure for the piezoelectric stack is proposed in this paper to solve this problem.Based on the theoretical analysis of heat transfer,two heating modes,namely,overall heating and local heating are analyzed and compared.Moreover,experimental tests are conducted to evaluate the effectiveness of the structure.Based on the results,it can be concluded that the theoretical results are confirmed with experimental results.Besides,the temperature and performance of the piezoelectric stack are kept stable as temperature varies from 10℃to-70℃,which manifests the feasibility of the structure.Therefore,this paper could be an available reference for those engaged in cryogenic investigation of smart materials and structures.展开更多
The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground...The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.展开更多
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
文摘The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41872249,41472302,41772348)supported by the National Natural Science Foundation of China
文摘The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.
文摘Observation and measurement were conducted to investigate contact angle andits hysteresis on rough surface. The experimental results indicate that the increase in solidsurface roughness enlarges advancing contact angle and decreases receding contact angle, resultingin enhanced hysteresis. It was observed that when Young''s contact angle θ_Y 【 90°, as theroughness of solid surface increased the extent of the decrease in receding contact angle exceededthat of the increase in advancing contact angle. Based on the experimental observations, the conceptof hysteresis tension was introduced to describe the contact angle hysteresis behavior on roughsolid surface. The model provides a thoughtful understanding of the physical nature of contact anglehysteresis, in particular an instructive description of the influence of surface roughness on thehysteresis. The prediction of the model is found in quite good agreement with the experimentalobservation and measurement.
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
基金Project supported by the National Natural Science Foundation ofChina (No. 40171047) and the Doctoral Foundation of NationalEducation Ministry China
文摘Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields’ conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 °C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evapo- ration. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
基金Projects BK2007145 supported by the Jiangsu Natural Science Foundation of China NCET-04-0454 by the Program for New Century Excellent Talentsin Universities
文摘In order to examine the factors which affect the range of heat transfer in earth surrounding subways, FLAC3D was adopted in this study to analyze these factors, under different conditions, in a systematic manner. When we compare these numerical tests, the results show that the main factors, affecting the heat transfer range are the thermal properties of the surrounding earth, the initial ground temperature and the temperature in the tunnel. The heat transfer coefficient between air and linings has little effect on the temperature distribution around the tunnel. The current results can provide a reference for improving the thermal environment in subways and optimizing the design of subwav ventilation and air conditioning.
基金Project(50976022) supported by the National Natural Science Foundation of ChinaProject(BY2011155) supported by the Provincial Science and Technology Innovation and Transformation of Achievements of Special Fund Project of Jiangsu Province,China
文摘Numerical computation models of air cooling heat transfer and flow behaviors in triangular wavy fin channels(TWFC) were established with structural parameters of fins considered.The air side properties of heat transfer coefficient and pressure drop are displayed with variable structural parameters of fins and inlet velocities of cooling air.Within the range of simulation,TWFC has the best comprehensive performance when inlet velocity vin=4-10 m/s.Compared with those of straight fins,the simulation results reveal that the triangular wavy fin channels are of higher heat transfer performances especially with the fin structural parameters of fin-height Fh=9.0 mm,fin-pitch Fp=2.5-3.0 mm,fin-wavelength λ=14.0-17.5 mm and fin-wave-amplitude A=1.0-1.2 mm.The correlations of both heat transfer factor and friction factor are presented,and the deviations from the experimental measurements are within 20%.
文摘Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.
基金Project supported by the National Natural Science Foundation ofChina (No. 40171047) and the Doctoral Foundation of NationalEducation Ministry China
文摘Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.
基金Supported by National Natural Science Foundation of China( No. 50476062) .
文摘Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.
文摘This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities.
基金Supported by the National Natural Science Foundation of China(51106140)the Natural Science Foundation of Zhejiang Province(Z1110695)
文摘Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.
基金Project(51575415)supported by the National Natural Science Foundation of ChinaProject(2016CFA077)supported by the Natural Science Foundation of Hubei Province of ChinaProject(2018-YS-026)supported by the Excellent Dissertation Cultivation Funds of Wuhan University of Technology,China。
文摘The evolution of temperature field of the continual motion induction cladding and the depth of heat affected zone are studied in this study.A three-dimensional finite element model for the point type continual induction cladding is established to investigate temperature distributions of fixed and motion induction cladding modes.The novel inductor is designed for cladding of curved surfaces.The modeling reliability is verified by the temperature measurements.The influence of process parameters on the maximum temperature and the generation and transfer of heat are studied.Quantitative calculation is performed to its melting rate to verify the temperature distribution and microstructures.The results show that a good metallurgical bond can be formed between the cladding layer and substrate.The melting rate gradually falls from the top of the cladding layer to the substrate,and the grain size in the substrate gradually rises.The heat affected zone is relatively small compared to integral heating.
文摘By analyzing heat transfer on the wall of fiat steel ribbon wound vessel (FSRWV), a numerical model of temperature distribution on the entire wall (including inner core wall, flat steel ribbons, outside cylinder of jacket and insulating layer) was established by the authors. With the model, the temperature distribution and the length change in the vessel walls and flat steel ribbons in low temperature are calculated and analyzed. The results show that the flat steel ribbon wound cryogenic high-pressure vessel is simpler in structure, safer and easier to manufacture than those of conventional ones.
文摘An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).
基金supported by the National Natural Science Foundation of China(No.11872207)the Aeronautical Science Foundation of China(No.20180952007)+1 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(No.MCMS-I-0520G01)the Key Laboratory Foundation of Equipment Pre-Research(No.6142204200307)。
文摘It is widely acknowledged that the performance of a piezoelectric stack would decline with the temperature decreasing,which will exert negative influence on its application in low-temperature environment.Therefore,a convenient and efficient warming structure for the piezoelectric stack is proposed in this paper to solve this problem.Based on the theoretical analysis of heat transfer,two heating modes,namely,overall heating and local heating are analyzed and compared.Moreover,experimental tests are conducted to evaluate the effectiveness of the structure.Based on the results,it can be concluded that the theoretical results are confirmed with experimental results.Besides,the temperature and performance of the piezoelectric stack are kept stable as temperature varies from 10℃to-70℃,which manifests the feasibility of the structure.Therefore,this paper could be an available reference for those engaged in cryogenic investigation of smart materials and structures.
基金Funded by 863 project (NO:2002AA107493)youthfounda-tion project of UESTC(NO:JX03018)
文摘The thermal distortion of an optical reflector surface due to the changing sunlight in a space environment will cause shift and spreading of its reflected focus and thereby influence the performance of space-to-ground laser communication links. Based on the characteristics of a low orbit satellite, the normal shift of a plan mirror caused by thermal distortion is analyzed with the software of the ANSYS of finite element analysis. A general expression of the transmitted beam from a distorted reflector surface and a counting formula for the shifts of the focus center before and after thermal distortion are deduced. The result of simulation shews that the magnitude order of the normal shift of the antenna mirror surface can be as high as tens of urad. The worse the mirror thermal distortion is, the larger the shift of the received focus center is. And the change of the shifts does not obey a linear rule.