In this study, we examined the effect of elevated temperature on the expression patterns of genes, i.e., nacrein, irr, n16, n19, and hsp70 in the pearl oyster Pinctada fucata. The experiment was carried out at 4 tempe...In this study, we examined the effect of elevated temperature on the expression patterns of genes, i.e., nacrein, irr, n16, n19, and hsp70 in the pearl oyster Pinctada fucata. The experiment was carried out at 4 temperatures, i.e., 20℃(ambient, control), 24, 28℃, and 32℃. The expression levels of target genes in P. fucata were assayed at 0, 6, 24, 48, and 96 h via real-time polymerase chain reaction. Results showed that the expression levels of nacrein and irr had no significant variations among different time points below 28℃, but significantly increased over time at 32℃. The expression levels of n16 and n19 did not change markedly at 20℃. The former increased significantly at 6 h and 24 h while the latter substantially decreased during 6–96 h at 24, 28 and 32℃. Among different temperatures, the level of n16 was significantly lower at 20℃ than at other temperatures during 6–96 h, and the level of n19 significantly varied among different temperatures at 48 h and 96 h. The expression level of hsp70 was significantly higher at 32℃ than at 20, 24 and 28℃ at 24 h. These results demonstrated that elevated temperature impacted the physiological processes of P. fucata and potentially influenced its adaptability to thermal stress.展开更多
An experimental investigation of passive cooling buildings has been carried out for a typical summer days extended from July to December of Baghdad in Iraq. Six independent chambers were designed and constructed for d...An experimental investigation of passive cooling buildings has been carried out for a typical summer days extended from July to December of Baghdad in Iraq. Six independent chambers were designed and constructed for different roof constructions. Night ventilation has been applied to study the possibility of reducing air temperature in buildings by testing different air changes per hour extended from 5 to 30. Measurements outside chambers including air temperature; relative humidity and solar radiation were achieved, while surface temperature and air temperature inside the chambers were recorded. The results show that the air temperature can be decreased with a range from 3 ℃ to 6 ℃ when using 50 mm polystyrene. This decrease can further be lowered by 2 ℃ to 4 ℃ if night ventilation of change per hours in buildings is allowed. The reduction in air temperature can be reduced to 5 ℃ by combination of external night ventilation and white paint.展开更多
基金supported by the National Natural Science Foundation of China (41006090)Joint Program of NSFC-Guangdong (U0831001)the Funds of Knowledge Innovation Program of Chinese Academy of Sciences (ZCX2-EW-Q21)
文摘In this study, we examined the effect of elevated temperature on the expression patterns of genes, i.e., nacrein, irr, n16, n19, and hsp70 in the pearl oyster Pinctada fucata. The experiment was carried out at 4 temperatures, i.e., 20℃(ambient, control), 24, 28℃, and 32℃. The expression levels of target genes in P. fucata were assayed at 0, 6, 24, 48, and 96 h via real-time polymerase chain reaction. Results showed that the expression levels of nacrein and irr had no significant variations among different time points below 28℃, but significantly increased over time at 32℃. The expression levels of n16 and n19 did not change markedly at 20℃. The former increased significantly at 6 h and 24 h while the latter substantially decreased during 6–96 h at 24, 28 and 32℃. Among different temperatures, the level of n16 was significantly lower at 20℃ than at other temperatures during 6–96 h, and the level of n19 significantly varied among different temperatures at 48 h and 96 h. The expression level of hsp70 was significantly higher at 32℃ than at 20, 24 and 28℃ at 24 h. These results demonstrated that elevated temperature impacted the physiological processes of P. fucata and potentially influenced its adaptability to thermal stress.
文摘An experimental investigation of passive cooling buildings has been carried out for a typical summer days extended from July to December of Baghdad in Iraq. Six independent chambers were designed and constructed for different roof constructions. Night ventilation has been applied to study the possibility of reducing air temperature in buildings by testing different air changes per hour extended from 5 to 30. Measurements outside chambers including air temperature; relative humidity and solar radiation were achieved, while surface temperature and air temperature inside the chambers were recorded. The results show that the air temperature can be decreased with a range from 3 ℃ to 6 ℃ when using 50 mm polystyrene. This decrease can further be lowered by 2 ℃ to 4 ℃ if night ventilation of change per hours in buildings is allowed. The reduction in air temperature can be reduced to 5 ℃ by combination of external night ventilation and white paint.