The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile...The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.展开更多
The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indi...The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.展开更多
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de...In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.展开更多
Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transm...Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.展开更多
The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by sca...The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by scanning electron microscope,X-ray diffractometer,mechanical testing,electrochemical test,immersion test,and ultraviolet spectrophotometry.The results indicate that Zn−3Sn alloy infiltrated into porous HA+β-TCP scaffold,which resulted in the formation of a compact(HA+β-TCP)/Zn−3Sn co-continuous composite,without any reaction layer between the Zn−3Sn alloy and the HA+β-TCP scaffold.The compressive strength of the composite was equal to about 3/4 that of Zn−3Sn alloy bulk.The corrosion rate of composite in simulated body fluid solution was slightly higher than that of Zn−3Sn alloy bulk.The main corrosion product on the composite surface was Zn(OH)2.The hemolysis rate of the composite was lower than that of Zn–3Sn alloy bulk and exhibited superior blood compatibility.展开更多
The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. ...The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. The X-ray diffraction patterns confirm the inverse spinel structure with residual oxide phases. Three distinct regions of frequency response on dielectric constant are observed Co1.2sMn0.5Fe1.75O4 as determined by the Wayne Kerr Impedance Analyzer. The first two regions of frequency response 1.13-4.5 MHz and 4.5-6.5 MHz exhibit the normal behavior but the last region 6.5-10.5 MHz indicates its anomalous behavior due to concurrent contribution of O^2-, Fe^3+, Co^2+ and Mn^3+ ions in the relaxation process for sintering effects (sintered at 700℃). This anomalous behavior is found to be pronounced and significant for the sample of composition Co1.25Mn0.25Fe1.75O4, which may be suitable to be used in the frequency band filter over wide range of frequencies. The single peak of imaginary part of dielectric constant (ε") indicates that the conduction process in this sample is due to the grain boundary resistance. The pronounced increase of capacitance (C) as observed from 100 ℃ to 125 ~C in temperature dependent measurement (30-125℃) is expected to eause from the change of polarization across the grain boundary due to redistribution of ions by the thermal agitation. The variation of resistance (R) with temperature (30-125 ℃) is found to exhibit semieonducting behavior that resulted from the p-type carriers (Co^2+/Co^3+). A significant increase of Z from 105 ℃ with the increase of temperature indicates the signature of phase transition from ferrimagnetic-to-ferromagnetic, which may be ascribed to the increase of Co content. The appearance of the single semicircular arc in the Cole-Cole plot may be attributed to the contribution of grain boundary resistance and correspond to the parallel equivalent circuit of resistor-capacitor (R-C) combination with single relaxation time. Saturation magnetization of Co1.25Mn0.25Fe1.75O4 and Co1.375Mn0.375Fe1.625O4 is found to be greater than the literature value (61.5 emu/g) of un-doped cobalt ferrite in the measurement of their initial magnetization using Lakeshore vibrating sample magnetometer. The negative real part of AC permeability of Co1.5Mn0.5Fe1.5O4 signifies the diamagnetic behavior in the frequency range 0.13-25.2 MHz and expected to cause from the formation of magnetic dipoles opposite to the applied field due to Mn^2+ in the B site. The samples are expected to be suitable for dielectric heating and high frequency applications.展开更多
Objective:The aim of the study was to investigate the expression and significance of cyclin E in gastric carcinoma.Methods:We detected the expression of cyclin E in three different pathologic types gastric carcinoma s...Objective:The aim of the study was to investigate the expression and significance of cyclin E in gastric carcinoma.Methods:We detected the expression of cyclin E in three different pathologic types gastric carcinoma samples by immuno-histochemical staining technique (SP method).Results:In 59 gastric carcinoma samples the positive rate of cyclin E expression in gastric carcinoma was 55.93% (33/59), and it was significantly higher than that of normal gastric mucosa (10.53%, 2/19).The positive rates of cyclin E expression in poor differentiation group and mucoid carcinoma group were 68.75% (11/16) and 66.67% (16/24), respectively, and these were significantly higher than that in well-middle differentiation group (31.58%, 6/19), but there was no significant difference between the fronted two groups (P>0.05).Conclusion:The high expression of cyclin E is associated with the progression of gastric carcinoma and probably related to the behavior of cellular biology.展开更多
The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equati...The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.展开更多
Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbona...Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.展开更多
This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of ten...This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of tension and compression, and it is used in the compiled finite element code. The material parameters used in the model can be identified from uniaxial static and dynamic experiments. Thereafter, it is used for analyzing damage and failure patterns of the dam subjected to water pressure and strong earthquakes. The numerical results show that it is necessary to consider both asymmetry between tension and compression and anisotropy of damage. Severe damage regions of the dam reveal brittle and risky positions clearly. Meanwhile damage patterns show the failure trend and safety behaviors of the dam. These results match well with that of the experiments carried out in DUT. The proposed model may be used to predict the damage patterns and potential failure modes of concrete structures like the dam. And the aseismic performance of the dam can be figured out.展开更多
Chatterjee considered a predator prey model with avian migration in the migration prey population IS. Chatterjee, Alternative prey source coupled with prey recovery enhance stability between migratory prey and their p...Chatterjee considered a predator prey model with avian migration in the migration prey population IS. Chatterjee, Alternative prey source coupled with prey recovery enhance stability between migratory prey and their predator in the presence of disease, Nonlinear Anal. Real World Appl. 11 (2010) 4415-4430]. In this paper, we modify and analyze the model by taking time dependent parameters and the general flmctional response into consideration. The conditions for the persistence of the system and the extinction of the disease are obtained. The global attractivity of the system is also studied. By numerical simulations, we find that the qualitative behavior of the system independent on the choice of the functional response. Moreover, it is observed that the infection rate, recruitment rate and the predation rate play a vital role in predicting the behavior of the dynamics.展开更多
基金We would like to acknowledge the Sao Paulo Research Foundation(FAPESP)(Grant No.2014/15091-7 and 2016/10997-0)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPq)(Grant No.449009/2014-9)This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001.Danielle Cristina Camilo MAGALHÃES acknowledges CNPq for her PhD scholarship(Grant No.153181/2013-3).
文摘The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.
基金Projects(41102229,51109208)supported by the National Natural Science Foundation of ChinaProject(2011CDB407)supported by Natural Science Foundation of Hubei Province,ChinaProject supported by Qing Lan Project of Jiangsu Province,China
文摘The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.
文摘In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.
基金Project(2017YFB0306300)supported by the National Key Research and Development Program of ChinaProject(2017ZX04005001)supported by the National Science and Technology Major Project,China+2 种基金Project(JCKY2014203A001)supported by National Defense Program of ChinaProjects(51905551,51675538,51601060)supported by the National Natural Science Foundation of ChinaProjects(Kfkt2018-03,zzYJKT2019-11)supported by State Key Laboratory of High-Performance Complex Manufacturing,China。
文摘Creep aging behavior of retrogression and re-aged(RRAed)7150 aluminum alloy(AA7150)was systematically investigated using the creep aging experiments,mechanical properties tests,electrical conductivity tests and transmission electron microscope(TEM)observations.Creep aging results show that the steady-state creep mechanism of RRAed alloys is mainly dislocation climb(stress exponent≈5.8),which is insensitive to the grain interior and boundary precipitates.However,the total creep deformation increases over the re-aging time.In addition,the yield strength and tensile strength of the four RRAed samples are essentially the same after creep aging at 140℃ for 16 h,but the elongation decreases slightly with the re-aging time.What’s more,the retrogression and re-aging treatment are beneficial to increase the hardness and electrical conductivity of the creep-aged 7150 aluminum alloy.It can be concluded that the retrogression and re-aging treatment before creep aging forming process can improve the microstructure within grain and at grain boundary,forming efficiency and comprehensive performance of mechanical properties and electrical conductivity of 7150 aluminum alloy.
基金the National Natural Science Foundation of China(No.51101039)the Fundamental Research Funds for the Central Universities,China(No.3072020CFT0702).
文摘The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by scanning electron microscope,X-ray diffractometer,mechanical testing,electrochemical test,immersion test,and ultraviolet spectrophotometry.The results indicate that Zn−3Sn alloy infiltrated into porous HA+β-TCP scaffold,which resulted in the formation of a compact(HA+β-TCP)/Zn−3Sn co-continuous composite,without any reaction layer between the Zn−3Sn alloy and the HA+β-TCP scaffold.The compressive strength of the composite was equal to about 3/4 that of Zn−3Sn alloy bulk.The corrosion rate of composite in simulated body fluid solution was slightly higher than that of Zn−3Sn alloy bulk.The main corrosion product on the composite surface was Zn(OH)2.The hemolysis rate of the composite was lower than that of Zn–3Sn alloy bulk and exhibited superior blood compatibility.
文摘The nanoparticles of Co1+xMnxFe2-xO4 (0≤x ≤ 0.5) ferrite system are synthesized by solid-state reaction route using planetary ball milling technique to investigate structural, electrical and magnetic properties. The X-ray diffraction patterns confirm the inverse spinel structure with residual oxide phases. Three distinct regions of frequency response on dielectric constant are observed Co1.2sMn0.5Fe1.75O4 as determined by the Wayne Kerr Impedance Analyzer. The first two regions of frequency response 1.13-4.5 MHz and 4.5-6.5 MHz exhibit the normal behavior but the last region 6.5-10.5 MHz indicates its anomalous behavior due to concurrent contribution of O^2-, Fe^3+, Co^2+ and Mn^3+ ions in the relaxation process for sintering effects (sintered at 700℃). This anomalous behavior is found to be pronounced and significant for the sample of composition Co1.25Mn0.25Fe1.75O4, which may be suitable to be used in the frequency band filter over wide range of frequencies. The single peak of imaginary part of dielectric constant (ε") indicates that the conduction process in this sample is due to the grain boundary resistance. The pronounced increase of capacitance (C) as observed from 100 ℃ to 125 ~C in temperature dependent measurement (30-125℃) is expected to eause from the change of polarization across the grain boundary due to redistribution of ions by the thermal agitation. The variation of resistance (R) with temperature (30-125 ℃) is found to exhibit semieonducting behavior that resulted from the p-type carriers (Co^2+/Co^3+). A significant increase of Z from 105 ℃ with the increase of temperature indicates the signature of phase transition from ferrimagnetic-to-ferromagnetic, which may be ascribed to the increase of Co content. The appearance of the single semicircular arc in the Cole-Cole plot may be attributed to the contribution of grain boundary resistance and correspond to the parallel equivalent circuit of resistor-capacitor (R-C) combination with single relaxation time. Saturation magnetization of Co1.25Mn0.25Fe1.75O4 and Co1.375Mn0.375Fe1.625O4 is found to be greater than the literature value (61.5 emu/g) of un-doped cobalt ferrite in the measurement of their initial magnetization using Lakeshore vibrating sample magnetometer. The negative real part of AC permeability of Co1.5Mn0.5Fe1.5O4 signifies the diamagnetic behavior in the frequency range 0.13-25.2 MHz and expected to cause from the formation of magnetic dipoles opposite to the applied field due to Mn^2+ in the B site. The samples are expected to be suitable for dielectric heating and high frequency applications.
文摘Objective:The aim of the study was to investigate the expression and significance of cyclin E in gastric carcinoma.Methods:We detected the expression of cyclin E in three different pathologic types gastric carcinoma samples by immuno-histochemical staining technique (SP method).Results:In 59 gastric carcinoma samples the positive rate of cyclin E expression in gastric carcinoma was 55.93% (33/59), and it was significantly higher than that of normal gastric mucosa (10.53%, 2/19).The positive rates of cyclin E expression in poor differentiation group and mucoid carcinoma group were 68.75% (11/16) and 66.67% (16/24), respectively, and these were significantly higher than that in well-middle differentiation group (31.58%, 6/19), but there was no significant difference between the fronted two groups (P>0.05).Conclusion:The high expression of cyclin E is associated with the progression of gastric carcinoma and probably related to the behavior of cellular biology.
基金supported by the National Natural Science Foundation of China(Grant No. 11274172)
文摘The suspension of electrodynamic loudspeakers includes a surround of the cone and a spider, and it is characterized by the mechanic stiffness in the lumped-parameter model. By solving the nonlinear differential equation of motion which considers the nonlinearity of suspension at low frequencies numerically and measuring different kinds of surrounds and spiders, the nonlinear behavior of suspension is theoretically and experimentally studied. Since the nonlinear stiffness of spiders and surrounds can be measured and fitted respectively before assembled into loudspeakers, which spider works best with which surround is studied. The performance of loudspeakers such as harmonic distortion based on the nonlinear parameters can be predicted.
基金supported by the National Natural Science Foundation of China (51932011, 51972346, 51802356, and 51872334)Innovation-Driven Project of Central South University (2020CX024)the Fundamental Research Funds for the Central Universities of Central South University (2020zzts075)。
文摘Potassium-ion batteries(PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure(NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity,enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of exsitu characterizations demonstrate that NSC exhibits superior structural stability during the(de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 Ag-1 and a stable capacity of 105.2 m Ahg-1 even at 2 Ag-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90510017 and 50878123)the National Basic Research Program of China (Grant No. 2007CB714104 )+1 种基金the Innovative Project for Postdoctor of Shandong Province (Grant No. 200803037)the Research Project of SUST Spring Bud (Grant No. 2008AZZ107)
文摘This paper presents a model to simulate the safe behavior of Dagangshan arch dam with a rate-dependency anisotropic damage model. This model considers the damage of asymmetry and anisotropy under cyclic loading of tension and compression, and it is used in the compiled finite element code. The material parameters used in the model can be identified from uniaxial static and dynamic experiments. Thereafter, it is used for analyzing damage and failure patterns of the dam subjected to water pressure and strong earthquakes. The numerical results show that it is necessary to consider both asymmetry between tension and compression and anisotropy of damage. Severe damage regions of the dam reveal brittle and risky positions clearly. Meanwhile damage patterns show the failure trend and safety behaviors of the dam. These results match well with that of the experiments carried out in DUT. The proposed model may be used to predict the damage patterns and potential failure modes of concrete structures like the dam. And the aseismic performance of the dam can be figured out.
文摘Chatterjee considered a predator prey model with avian migration in the migration prey population IS. Chatterjee, Alternative prey source coupled with prey recovery enhance stability between migratory prey and their predator in the presence of disease, Nonlinear Anal. Real World Appl. 11 (2010) 4415-4430]. In this paper, we modify and analyze the model by taking time dependent parameters and the general flmctional response into consideration. The conditions for the persistence of the system and the extinction of the disease are obtained. The global attractivity of the system is also studied. By numerical simulations, we find that the qualitative behavior of the system independent on the choice of the functional response. Moreover, it is observed that the infection rate, recruitment rate and the predation rate play a vital role in predicting the behavior of the dynamics.