Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulati...Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.展开更多
LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or ...LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.展开更多
This paper relates to Stockhausen's composition method of the 1970s based on the concept called "formula". This method is in part a derivation and in part an improvement of serialism. Stockhausen applied it in his ...This paper relates to Stockhausen's composition method of the 1970s based on the concept called "formula". This method is in part a derivation and in part an improvement of serialism. Stockhausen applied it in his works starting from 1970, with the composition Mantra for two pianos and ring modulator, and refined it during his whole life. This paper will discuss the formula's concept and his application. In particular, the author tries to analyze the first composition where the formula's method is applied under two different points of view: the composition method and the rule of technology in the composition.展开更多
Based on advanced computer technology, internet of things (lOT) technology, project management con- cept and professional technology and combined with the innovative theories, methods and techniques in earlier hy- d...Based on advanced computer technology, internet of things (lOT) technology, project management con- cept and professional technology and combined with the innovative theories, methods and techniques in earlier hy- dropower projects, the life-cycle risk management system of high earth-rock dam project for Nuozhadu project was developed. The system mainly includes digital dam, three-dimensional design, construction quality monito- ring, safety assessment and warning, etc, to integrally manage and analyze the dam design, constructional quality and safety monitoring information. It realized the dynamic updates of the comprehensive information and the safe- ty quality monitoring in the project life cycle, and provided the basic platform for the scientific management of the construction and operation safety of high earth-rock dam. Application in Nuozhadu earth-rock dam showed that construction safety monitoring and warning greatly helped accelerate the construction progress and improve project quality, and provided a new way for the quality safety control of high earth-rock dam.展开更多
With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the desi...With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the design of rainwater drainage, sewage drainage design, water supply design and fire water supply design. At present, the research on the life cycle assessment of urban drainage system is mainly focused on the sewage treatment plant, therefore in this paper we introduce the theoretical basis of life cycle assessment. In the era of information network, building information model(BIM) technology is widely applied to the design of building water supply and drainage, which and effectively improves the design effi ciency, and makes up for the traditional water supply and drainage design of a lot of problems. In this paper, we analyze the development trend of water supply and drainage engineering based on life cycle assessment and building information model.展开更多
The environmental impact during the preparation of coffee beverages was evaluated on real time. The functional unit is a cup of coffee prepared from 7 g of ground coffee and 125 mL of tap water. The boundaries system ...The environmental impact during the preparation of coffee beverages was evaluated on real time. The functional unit is a cup of coffee prepared from 7 g of ground coffee and 125 mL of tap water. The boundaries system considered are assembly process, electricity process, tap water process, coffee process and municipal waste process. Based on boundary system, the life cycle inventory is carbon dioxide, 50.31 g; coal, brown, 53.72 rag; coal hard, 0.9906 g; dinitrogen monoxide, 0.9575 mg; natural gas, 0.0020 m^3; methane, fossil, 13.82 mg; oil, crude, 1.012 g; uranium, 15.02 ug. The life cycle impact assessment is determined using the sum of the contributions of the impacts shown in the inventory analysis, each one multiplied by a coefficient called the "characterization factor", which indicates the scale of the potential contributed by the individual substance to the effect. The results show the advantages of using the LCA (life cycle assessment) on real time as it provides information from both quality and environmental parameters allowing taking actions based on timely information. The preparation of a cup of coffee produced an environmental load of 50.9 g of CO2 equivalents and Non Renewable energy equivalents to 151 kJ; the sugar process and materials transportation were not considered.展开更多
The emergence and development of constructal theory,which has been a new discipline branch to research sorts of structures in nature and engineering,are reviewed.The core of the constructal theory is that various shap...The emergence and development of constructal theory,which has been a new discipline branch to research sorts of structures in nature and engineering,are reviewed.The core of the constructal theory is that various shapes and structures of the matters in nature are generated from the tendency to obtain optimal performance.Constructal theory and its application are summarized,from disciplines such as heat,mechanism,fluid flow,electricity,magnetism and chemistry,to life and non-life systems in nature.展开更多
As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of wate...As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of water distribution network usually ignores the influence of earthquake,resulting in water stoppage in large area during many recent strong earthquakes.This study introduced a seismic design approach of water distribution network,i.e.,topology optimization design.With network topology as the optimization goal and seismic reliability as the constraint,a topology optimization model for designing water distribution network under earthquake is established.Meanwhile,two element investment importance indexes,a pipeline investment importance index and a diameter investment importance index,are introduced to evaluate the importance of pipelines in water distribution network.Then,four combinational optimization algorithms,a genetic algorithm,a simulated annealing genetic algorithm,an ant colony algorithm and a particle swarm algorithm,are introduced to solve this optimization model.Moreover,these optimization algorithms are used to optimize a network with 19 nodes and 27 pipelines.The optimization results of these algorithms are compared with each other.展开更多
Biological data,represented by the data from omics platforms,are accumulating exponentially.As some other data-intensive scientific disciplines such as high-energy physics,climatology,meteorology,geology,geography and...Biological data,represented by the data from omics platforms,are accumulating exponentially.As some other data-intensive scientific disciplines such as high-energy physics,climatology,meteorology,geology,geography and environmental sciences,modern life sciences have entered the information-rich era,the era of the 4th paradigm.The creation of Chinese information engineering infrastructure for pan-omics studies(CIEIPOS) has been long overdue as part of national scientific infrastructure,in accelerating the further development of Chinese life sciences,and translating rich data into knowledge and medical applications.By gathering facts of current status of international and Chinese bioinformatics communities in collecting,managing and utilizing biological data,the essay stresses the significance and urgency to create a 'data hub' in CIEIPOS,discusses challenges and possible solutions to integrate,query and visualize these data.Another important component of CIEIPOS,which is not part of traditional biological data centers such as NCBI and EBI,is omics informatics.Mass spectroscopy platform was taken as an example to illustrate the complexity of omics informatics.Its heavy dependency on computational power is highlighted.The demand for such power in omics studies is argued as the fundamental function to meet for CIEIPOS.Implementation outlook of CIEIPOS in hardware and network is discussed.展开更多
基金Project supported by the Research Grant Council of Hong Kong,China
文摘Sustainable performance is expected to become a major factor when examining the feasibility of a construction project in terms of its life cycle performance. The study on which this paper is based developed a simulation model, using system dy- namics methodology, to assess the sustainable performance of projects. Three major factors are used to examine project sus- tainable performance (PSP): the sustainability of economic development (E), the sustainability of social development (S), and the sustainability of environmental development (En). Sustainable development ability (SDA) was used as a prototype to evaluate the degree of sustainable performance. The simulation software ‘ithink’ was used to help with the application of the model to a real life case. This paper explains and demonstrates the procedures used to develop the model and finally offers an approach for assessing the feasibility of a construction project in terms of its sustainable performance.
文摘LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.
文摘This paper relates to Stockhausen's composition method of the 1970s based on the concept called "formula". This method is in part a derivation and in part an improvement of serialism. Stockhausen applied it in his works starting from 1970, with the composition Mantra for two pianos and ring modulator, and refined it during his whole life. This paper will discuss the formula's concept and his application. In particular, the author tries to analyze the first composition where the formula's method is applied under two different points of view: the composition method and the rule of technology in the composition.
文摘Based on advanced computer technology, internet of things (lOT) technology, project management con- cept and professional technology and combined with the innovative theories, methods and techniques in earlier hy- dropower projects, the life-cycle risk management system of high earth-rock dam project for Nuozhadu project was developed. The system mainly includes digital dam, three-dimensional design, construction quality monito- ring, safety assessment and warning, etc, to integrally manage and analyze the dam design, constructional quality and safety monitoring information. It realized the dynamic updates of the comprehensive information and the safe- ty quality monitoring in the project life cycle, and provided the basic platform for the scientific management of the construction and operation safety of high earth-rock dam. Application in Nuozhadu earth-rock dam showed that construction safety monitoring and warning greatly helped accelerate the construction progress and improve project quality, and provided a new way for the quality safety control of high earth-rock dam.
文摘With the rapid development of construction engineering and municipal engineering in recent years, water supply and drainage technology has gradually matured. Building water supply and drainage design contains the design of rainwater drainage, sewage drainage design, water supply design and fire water supply design. At present, the research on the life cycle assessment of urban drainage system is mainly focused on the sewage treatment plant, therefore in this paper we introduce the theoretical basis of life cycle assessment. In the era of information network, building information model(BIM) technology is widely applied to the design of building water supply and drainage, which and effectively improves the design effi ciency, and makes up for the traditional water supply and drainage design of a lot of problems. In this paper, we analyze the development trend of water supply and drainage engineering based on life cycle assessment and building information model.
文摘The environmental impact during the preparation of coffee beverages was evaluated on real time. The functional unit is a cup of coffee prepared from 7 g of ground coffee and 125 mL of tap water. The boundaries system considered are assembly process, electricity process, tap water process, coffee process and municipal waste process. Based on boundary system, the life cycle inventory is carbon dioxide, 50.31 g; coal, brown, 53.72 rag; coal hard, 0.9906 g; dinitrogen monoxide, 0.9575 mg; natural gas, 0.0020 m^3; methane, fossil, 13.82 mg; oil, crude, 1.012 g; uranium, 15.02 ug. The life cycle impact assessment is determined using the sum of the contributions of the impacts shown in the inventory analysis, each one multiplied by a coefficient called the "characterization factor", which indicates the scale of the potential contributed by the individual substance to the effect. The results show the advantages of using the LCA (life cycle assessment) on real time as it provides information from both quality and environmental parameters allowing taking actions based on timely information. The preparation of a cup of coffee produced an environmental load of 50.9 g of CO2 equivalents and Non Renewable energy equivalents to 151 kJ; the sugar process and materials transportation were not considered.
基金supported by the National Natural Science Foundation of China (Grant No. 51176203)the Natural Science Foundation of Naval University of Engineering (Grant No. HGDYDJJ10011)
文摘The emergence and development of constructal theory,which has been a new discipline branch to research sorts of structures in nature and engineering,are reviewed.The core of the constructal theory is that various shapes and structures of the matters in nature are generated from the tendency to obtain optimal performance.Constructal theory and its application are summarized,from disciplines such as heat,mechanism,fluid flow,electricity,magnetism and chemistry,to life and non-life systems in nature.
基金supported by the Ministry of Science and Technology of China (Grant No. SLDRCE09-B-12)the Natural Science Funds for Young Scholars of China (Grant No.50808144)
文摘As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of water distribution network usually ignores the influence of earthquake,resulting in water stoppage in large area during many recent strong earthquakes.This study introduced a seismic design approach of water distribution network,i.e.,topology optimization design.With network topology as the optimization goal and seismic reliability as the constraint,a topology optimization model for designing water distribution network under earthquake is established.Meanwhile,two element investment importance indexes,a pipeline investment importance index and a diameter investment importance index,are introduced to evaluate the importance of pipelines in water distribution network.Then,four combinational optimization algorithms,a genetic algorithm,a simulated annealing genetic algorithm,an ant colony algorithm and a particle swarm algorithm,are introduced to solve this optimization model.Moreover,these optimization algorithms are used to optimize a network with 19 nodes and 27 pipelines.The optimization results of these algorithms are compared with each other.
基金financial support of Taicang government,Suzhou,China
文摘Biological data,represented by the data from omics platforms,are accumulating exponentially.As some other data-intensive scientific disciplines such as high-energy physics,climatology,meteorology,geology,geography and environmental sciences,modern life sciences have entered the information-rich era,the era of the 4th paradigm.The creation of Chinese information engineering infrastructure for pan-omics studies(CIEIPOS) has been long overdue as part of national scientific infrastructure,in accelerating the further development of Chinese life sciences,and translating rich data into knowledge and medical applications.By gathering facts of current status of international and Chinese bioinformatics communities in collecting,managing and utilizing biological data,the essay stresses the significance and urgency to create a 'data hub' in CIEIPOS,discusses challenges and possible solutions to integrate,query and visualize these data.Another important component of CIEIPOS,which is not part of traditional biological data centers such as NCBI and EBI,is omics informatics.Mass spectroscopy platform was taken as an example to illustrate the complexity of omics informatics.Its heavy dependency on computational power is highlighted.The demand for such power in omics studies is argued as the fundamental function to meet for CIEIPOS.Implementation outlook of CIEIPOS in hardware and network is discussed.