Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, e...Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.展开更多
With the accelerating development of modern residential districts and the improvement of living levels, the requirement of people on environment is increasingly enhanced as well as the demand for culture. Based on peo...With the accelerating development of modern residential districts and the improvement of living levels, the requirement of people on environment is increasingly enhanced as well as the demand for culture. Based on people-oriented principle, this design utilized Chinese 'Fu' (blessings) culture to express people’s eager for a better life and the atmosphere of good fortune. It also produced the image of ecological environment by designing water landscapes and plant landscapes, created active space like squares for activity and active water system and developed the characteristics of residential districts by designing landscape sketches and plant landscapes.展开更多
Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for...Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for local decision-making as well as sustainable landscape use and management. Results revealed that landscape from 1974 to 1995 changed at the regional scale as the area of forestland decreased, while cropland, shrubland, economic forest, grassland, and built-up land increased. Landscape changes mainly occurred in forestland, shrubland, grassland, economic forest, and built-up land. Moreover, the changes among forestland, shrubland, and grassland were the largest, influencing the whole characteristics of the changes in the basin. Analysis of the changes between 1974 and 1995 in the study area indicated that landscape heterogeneity and fragmentation increased, whereas landscape connectivity decreased. There were multiple reasons for landscape changes. A principal component analysis (PCA) was used to quantitatively study driving forces of landscape changes. The PCA results showed that economic and population factors were the principal driving forces of landscape changes from 1974 to 1995 in the upper Minjiang River basin, and that PCA was a suitable method for investigating driving forces of landscape changes.展开更多
Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces...Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.展开更多
A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south ...A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.展开更多
This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effe...This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.展开更多
Ecosystem service is an emerging concept that grows to be a hot research area in ecology.Spatially explicit ecosystem service values are important for ecosystem service management.However,it is difficult to quantify e...Ecosystem service is an emerging concept that grows to be a hot research area in ecology.Spatially explicit ecosystem service values are important for ecosystem service management.However,it is difficult to quantify ecosystem services.Remote sensing provides images covering Earth surface,which by nature are spatially explicit.Thus,remote sensing can be useful for quantitative assessment of ecosystem services.This paper reviews spatially explicit ecosystem service studies conducted in ecology and remote sensing in order to find out how remote sensing can be used for ecosystem service assessment.Several important areas considered include land cover,biodiversity,and carbon,water and soil related ecosystem services.We found that remote sensing can be used for ecosystem service assessment in three different ways:direct monitoring,indirect monitoring,and combined use with ecosystem models.Some plant and water related ecosystem services can be directly monitored by remote sensing.Most commonly,remote sensing can provide surrogate information on plant and soil characteristics in an ecosystem.For ecosystem process related ecosystem services,remote sensing can help measure spatially explicit parameters.We conclude that acquiring good in-situ measurements and selecting appropriate remote sensor data in terms of resolution are critical for accurate assessment of ecosystem services.展开更多
The article studies tourism eco-environment of 14 cities of Gangsu Province, China, based on GIS with many kinds of multi-subject spatial database, such as remote sensing data, observation data and literature data. Th...The article studies tourism eco-environment of 14 cities of Gangsu Province, China, based on GIS with many kinds of multi-subject spatial database, such as remote sensing data, observation data and literature data. The research results were as follows. First, spatial features of 14 cities' tourism eco-environment are displayed with five levels of vulnerability respectively. The vulnerability in Gansu becomes worse from Gannan City, located in southern Gansu to Hexi Corridor which lies in northwestern Gansu. Second, the areas of above the middle vulnerability level make up 75% of the total areas of Gansu Province. Third, more than 70% of high-level human and natural tourism resources are in the areas with high vulnerability eco-environment. Fourth, it is crucial to develop comprehensive tourism industry in order to improve the harmonious development between tourism industry and eco-environment in Gansu Province.展开更多
The spatial distribution of meteorological elements is important for understanding the regional meteorology and climate changes. However, previous studies rarely focused on the daily changes of the spatial patterns of...The spatial distribution of meteorological elements is important for understanding the regional meteorology and climate changes. However, previous studies rarely focused on the daily changes of the spatial patterns of meteorological elements due to the limitation of remote sensing (RS) techniques and traditional meteorological methods. In this paper, the regional meteorological elements were simulated by the fifth-generation non-hydrostatic Mesoscale Model (MM5), and the spatial patterns of meteorological elements and their diurnal variations were analyzed in landscape level over the Pearl (Zhujiang) River Delta (PRD), China. The results showed that there were several centers of urban heat islands, cold islands, dry islands, wet islands, high wind over the PRD at noon. The diurnal changes of Moran I of meteorological elements were obvious and they reached the extremum at noon and 2-3 hours after the sunrise. The landscape indices of meteorological elements, such as area-weighted mean Fractal Dimension Index (FRAC_AM), Landscape Shape lndex (LSI), Shannon's Diversity Index (SHDI) and Contagion lndex (CONTAG), were more variable at about the sunrise, noon and sunset. The occurrence of wave crests and vales of landscape indices was affected by the surface net radiation, turbulence and local circumfluence. The spatial patterns of meteorological elements correlated well with the land surface, thermal exchanges and local circumfluence. A new approach combining GIS, RS and numerical simulations technologies and the landscape ecology method was presented to analyze spatial patterns of meteorological elements, which may be useful for studying global and regional climate changes.展开更多
The construction of an ecological city has two founda- tional platforms: the small platform, namely urban district or simply called as "city ecosystem"; and the big platform, namely around city district in c...The construction of an ecological city has two founda- tional platforms: the small platform, namely urban district or simply called as "city ecosystem"; and the big platform, namely around city district in certain region scope or also referred to as "city-region ecosystem". The construction of an ecological city must be launched in the dual spatial criteria: in city (urban district) criterion—optimizing the city ecosystem; in city-region (city territory) criterion—optimizing the city-region ecosystem. Luoy-ang has the bright characteristic and the typical image within cities of China, and even in the world. The construction of an ecological city in dual spatial criteria—the city and the city-region—has the vital significance to urbanization advancement and sustainable development in Luoyang. In city-region criterion, the primary mission of Luoyang’s ecological city construction is to create a fine ecological environment platform in its city territory. In city criterion, the basic duty of Luoyang’s ecologic city construction is to enhance the ecological capacity and benefit of the central city.展开更多
The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out...The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out to examine the dynamics of microbial communities in the rhizosphere of two soybean genotypes grown in a black soil in Northeast China with a long history of soybean cultivation. The two soybean genotypes, Beifeng 11 and Hai 9731, differing in productivity were grown in a mixture of black soil and siliceous sand. The bacterial communities were compared at three zone locations including rhizoplane, rhizosphere, and bulk soil at the third node (V3), early flowering (R1), and early pod (R3) stages using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DCGE) of 16S rDNA. The results of principal component analyses (PCA) showed that the bacterial community structure changed with growth stage. Spatially, the bacterial communities in the rhizoplane and rhizosphere were significantly different from those in the bulk soil. Nevertheless, the bacterial communities in the rhizoplane were distinct from those in the rhizosphere at the V3 stage, while no obvious differences were found at the R1 and R3 stages. For the two genotypes, the bacterial community structure was similar at the V3 stage, but differed at the R1 and R3 stages. In other words, some bacterial populations became dominant and some others recessive at the two later stages, which contributed to the variation of the bacterial community between the two genotypes. These results suggest that soybean plants can modify the rhizosphere bacterial communities in the black soil, and there existed genotype-specific bacterial populations in the rhizospbere, which may be related to soybean productivity.展开更多
The goal of ecopsychology is to awaken the inherent sense of environmental reciprocity that lies within the ecological unconsciousness. Proclaiming the spirit of ecopsychology, Theodore Roszak argues that psychotherap...The goal of ecopsychology is to awaken the inherent sense of environmental reciprocity that lies within the ecological unconsciousness. Proclaiming the spirit of ecopsychology, Theodore Roszak argues that psychotherapy is an urban movement, but human beings can never heal themselves until they reconnect with nature. Other therapies aim at healing the alienation between person and person, person and family, person and society; ecopsychology intends to heal the more primary alienation between the person and the natural environment. Henri Lefebvre's work has revitalized urban studies, geography and planning via concepts like the social production of space. Lefebvre claims that space is not an inert, neutral, and pre-existing given, but rather, an on-going production of spatial relations. According to Lefebvre, space is produced by three types of practice: spatial practices of physical transformation of the environment, practices of representation of space, and everyday practices of representational space. Lefebvre further presents a "differential space," named as such for its dialectical resistance to the forces of homogenization present in "abstract space." The aim of this paper is to trace the ecological voice from Roszak's The Voice of the Earth in Henri Lefebvre's "differential space." Roszak's ecopsychology has formed a differential space, acknowledging that the boundaries of dualism and separations such as mind and body, man and nature should be finally dissolved in terms of ecological sustainability. Within this space, a holistic approach and thinking are created and required to take into account perception of the inextricable relationship between all life and all phenomena.展开更多
The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhan...The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhances them in the following ways: 1) the application program interfaces (API) are used to transmit data and messages among different parts of the system; 2) the integrated system can support studies on land evaluations and ecological analyses by efficient management of attribute and spatial data and 3) correspondingly, spatial records and attributive records are linked by the same identifiers (ID). A case study application in Zigui County of the Three Gorges Area in China demonstrates that the system could employ land-use maps and land property data to predicate and analyze the land utilization changes in the past, present and future. The ecological environment analysis can be carried out with the data of land, economics and terrain map used, showing that the system can be widely applied, especially to survey land and environment resources in the countryside area.展开更多
Deforestation is a major environmental challenge in the mountain areas of Pakistan. The study assessed trends in the forest cover in Chitral tehsil over the last two decades using supervised land cover classification ...Deforestation is a major environmental challenge in the mountain areas of Pakistan. The study assessed trends in the forest cover in Chitral tehsil over the last two decades using supervised land cover classification of Landsat TM satellite images from 1992, 2000, and 2009, with a maximum likelihood algorithm. In 2009, the forest cover was 10.3% of the land area of Chitral(60,000 ha). The deforestation rate increased from 0.14% per annum in 1992–2000 to 0.54% per annum in 2000–2009, with 3,759 ha forest lost over the 17 years. The spatial drivers of deforestation were investigated using a cellular automaton modelling technique to project future forest conditions. Accessibility(elevation, slope), population density, distance to settlements, and distance to administrative boundary were strongly associated with neighbourhood deforestation. A model projection showed a further loss of 23% of existing forest in Chitral tehsil by 2030, and degradation of 8%, if deforestation continues at the present rate. Arandu Union Council, with 2212 households, will lose 85% of its forest. Local communities have limited income resources and high poverty and are heavily dependent on non-timber forest products for their livelihoods. Continued deforestation will further worsen their livelihood conditions, thus improved conservation efforts are essential.展开更多
As organchlorine pesticides(OCPs) may be an ecologic threat to mountain environments due to their tendency to deposit and accumulate in mountain regions undergoing long-range air transport, OCPs were analyzed in soils...As organchlorine pesticides(OCPs) may be an ecologic threat to mountain environments due to their tendency to deposit and accumulate in mountain regions undergoing long-range air transport, OCPs were analyzed in soils collected from an intermontane basin of the western Tian Shan Mountains, which is the UNESCO protected natural reserve of Issyk-Kul. Total OCP concentrations in the Issyk-Kul region ranged from 4.63 to 414 ng/g dw, of which two extraordinary high OCP concentrations(414 ng/g dw and 213 ng/g dw, respectively) influenced by an abandoned dumping site and urban sewage, respectively, were found. Principal component analysis(PCA) and correlation analysis inferred that the OCP inputs in the east of the Issyk-Kul region were mainly from local endogenous sources, and exogenous input via LRAT processes were prominent in the west and south. Additionally, the isomeric and parent substance/metabolite ratios revealed most pesticides accumulated in this region were from old usage, while DDTs had fresh input because of possibly illegal regional application and a slow degradation from the dumping site. Furthermore, ecological risk assessment revealed that no frequently adverse ecological effects were observed in the Issyk-Kul region, but potential risks on neighbouring organisms induced by p,p'-DDT and γ-HCH in dumping site and urban sewage should be considered when devising an efficient management plan to prevent secondary pollution.展开更多
Trophic structure of fish communities is fundamental for ecosystem-based fisheries management, and trophic spectrum classifies fishes by their positions in food web, which provides a simple summary on the trophic stru...Trophic structure of fish communities is fundamental for ecosystem-based fisheries management, and trophic spectrum classifies fishes by their positions in food web, which provides a simple summary on the trophic structure and ecosystem function. In this study, both fish biomass and abundance trophic spectra were constructed to study the spatial and seasonal variations in the trophic structure of demersal fish assemblages in Jiaozhou Bay, China. Data were collected from four seasonal bottom trawl surveys in Jiaozhou Bay from February to November in 2011. Trophic levels(TLs) of fishes were determined by nitrogen stable isotope analysis. This study indicated that most of these trophic spectra had a single peak at trophic level(TL) of 3.4–3.7, suggesting that demersal fish assemblages of Jiaozhou Bay were dominated by secondary consumers(eg. Pholis fangi and Amblychaeturichthys hexanema). The spatial and seasonal variations of trophic spectra of Jiaozhou Bay reflected the influence of fish reproduction, fishing pressure and migration of fishes. Two-way analysis of variance(ANOVA) showed that seasonal variations in trophic spectra in Jiaozhou Bay were significant(P <0.05), but variations among different areas were not significant( P >0.05). The trophic spectrum has been proved to be a useful tool to monitor the trophic structure of fish assemblages. This study highlighted the comprehensive application of fish biomass and abundance trophic spectra in the study on trophic structure of fish assemblages.展开更多
Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective meth...Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective method to depict climate change. However, these studies were restricted to large scales or of limited accuracy due to uncertainties in climate model projections. In addition, the impact of elevation on the shift of climate zones, as compared with other factors, is less emphasized. To address these issues we compiled the KSppen Climate Classification (period 1961-2olo) for the study area, Sichuan Province, China. The spatial resolution was selected as x km x x km. Sichuan Province may be characterized by 3 main climate classes and 1o subtypes. The east-west gradient of the climatic regimes in Siehuan is represented by the main climate classes, warm temperate climates (C), snow climates (D) and polar climates (E), at which the most abundant class is C. The most abundant subtype is snow climate with dry winter and cool summer (Dwe). Shifts in K/Sppen climate classes reflect the observed trend of increasing temperature. Finally, the elevation showed an obvious impact on the distribution and the change of climate classes in Siehuan Province. The shift of areas covered by KSppen climate classes increases with elevation.展开更多
The aggregation index (AI) is a classical ecology calculation method, which has been widely used for measuring the aggregation level of spatial patterns within a landscape scale in landscape ecological studies. Howeve...The aggregation index (AI) is a classical ecology calculation method, which has been widely used for measuring the aggregation level of spatial patterns within a landscape scale in landscape ecological studies. However, it has certain limitions. For instance, identical results can be obtained by AI even when the shape and number of landscape patches are totally different in two landscape units. Furthermore, the value of AI approaches to 1 if the landscape patch is large enough. To solve these problems, a logical limitation of the original AI equation was revised firstly. Secondly, an improved AI-J was developed based on the awareness of the effects of spatial distribution characteristics of patches and changing spatial scale on AI operation. Finally, the accuracy of AI and AI-J results were evaluated through a case study of city green patches in Chengdu, P. R. China. The results show that the calculated result of AI-J is more precise than that of AI and AI-J can be used to compare a certain landscape class under different spatial scales.展开更多
基金Supported by National High-tech R&D Program of China(863Program)(2009AA12Z-140)National Natural Science Foundation of China(40771144,40575035)Scientific Research Foundation of Sichuan Normal University(SXK11002)~~
文摘Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.
文摘With the accelerating development of modern residential districts and the improvement of living levels, the requirement of people on environment is increasingly enhanced as well as the demand for culture. Based on people-oriented principle, this design utilized Chinese 'Fu' (blessings) culture to express people’s eager for a better life and the atmosphere of good fortune. It also produced the image of ecological environment by designing water landscapes and plant landscapes, created active space like squares for activity and active water system and developed the characteristics of residential districts by designing landscape sketches and plant landscapes.
基金Project supported by the Major State Basic Research Development Program of China (973 Program)(No. 2002CB111506).
文摘Landscape changes were traced over the 20 years from 1974 to 1995 in the upper Minjiang River basin, one of the most important forest regions in China, based on satellite image interpretation to provide basic data for local decision-making as well as sustainable landscape use and management. Results revealed that landscape from 1974 to 1995 changed at the regional scale as the area of forestland decreased, while cropland, shrubland, economic forest, grassland, and built-up land increased. Landscape changes mainly occurred in forestland, shrubland, grassland, economic forest, and built-up land. Moreover, the changes among forestland, shrubland, and grassland were the largest, influencing the whole characteristics of the changes in the basin. Analysis of the changes between 1974 and 1995 in the study area indicated that landscape heterogeneity and fragmentation increased, whereas landscape connectivity decreased. There were multiple reasons for landscape changes. A principal component analysis (PCA) was used to quantitatively study driving forces of landscape changes. The PCA results showed that economic and population factors were the principal driving forces of landscape changes from 1974 to 1995 in the upper Minjiang River basin, and that PCA was a suitable method for investigating driving forces of landscape changes.
文摘Urban green spaces have been arisen growing concern responded to the social and environmental costs of urban sprawl. A wide range of planning and policies has been and/or will be designed to protect urban green spaces and optimize their spatial pattern. A better design or planning of urban green space can make a major contribution to quality of environment and urban life, and furthermore can decide whether we can have a sustainable development in the urban area. Information about the status quo of urban green spaces can help planners design more effectively. However, how to quantify and capture such information will be the essential question we face. In this paper, to quantify the urban green space, a new method comprising gradient analysis, landscape metrics and GIS was developed through a case of Jinan City. The results demonstrate: 1) the gradient analysis is a valid and reliable instrument to quantify the urban green space spatial pattern precisely; 2) using moving window, explicit landscape metrics were spatially realized. Compared with quantifying metrics in the entire landscape, it would be better to link pattern with process and establish an important basis for analyzing the ecological and socioeconomic functions of green spaces.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB833504)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050601)
文摘A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.
基金provided by the Special Support Foundation of the Institute of Mountain Hazards and Environment (IMHE)the 100 Talents Programme of IMHE,Chinese Academy of Sciences (No. SDSQB-2011-01)
文摘This study explores the role of a traditional tillage method,i.e.,compensatory hoeing,for sustainable agro-ecosystem management in the hilly areas of the Chongqing municipality,south-western China.To validate the effects of compensatory tillage on the terraced slopes,the tillage method of noncompensatory hoeing was conducted on a linear slope.To acquire information about 137 Cs inventories and soil texture,soil samples were collected by a core sampler with a 6.8-cm diameter at 5.0-m intervals along the toposequence and the linear slope in the dry season(March) of 2007.Meanwhile,a tillage erosion model was used for evaluating the spatial pattern of tillage erosion.The 137 Cs data showed that on the terraced slope,soil was lost from the upper slope,and soil deposition occurred at the toe slope positions on each terrace.As a result,abrupt changes in the 137 Cs inventories of soil were found over short distances between two sides of terrace boundaries.Results obtained from the tillage erosion model and the 137 Cs data indicate that soil redistribution mainly results from tillage erosion in the terraced landscape.Consecutive non-compensatory tillage caused soil redistribution on the linear slope,resulting in thin soil profile disappearing at the top and soil accumulating at the bottom positions of the linear slope.This result further validates that compensatory tillage could avoid the complete erosion of the thin soil layer at the summit position.Therefore,this traditional tillage.method,i.e.,compensatory tillage,has maintained the soil quality at the summit of the slope in the past decades.
基金Under the auspices of National Basic Research Priorities Program of China (No 2009CB421104)National Natural Science Foundation of China (No 40801070)+1 种基金Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-421)the CAS/SAFEA International Partnership Program for Creative Research Teams of 'Ecosystem Processes and Services'
文摘Ecosystem service is an emerging concept that grows to be a hot research area in ecology.Spatially explicit ecosystem service values are important for ecosystem service management.However,it is difficult to quantify ecosystem services.Remote sensing provides images covering Earth surface,which by nature are spatially explicit.Thus,remote sensing can be useful for quantitative assessment of ecosystem services.This paper reviews spatially explicit ecosystem service studies conducted in ecology and remote sensing in order to find out how remote sensing can be used for ecosystem service assessment.Several important areas considered include land cover,biodiversity,and carbon,water and soil related ecosystem services.We found that remote sensing can be used for ecosystem service assessment in three different ways:direct monitoring,indirect monitoring,and combined use with ecosystem models.Some plant and water related ecosystem services can be directly monitored by remote sensing.Most commonly,remote sensing can provide surrogate information on plant and soil characteristics in an ecosystem.For ecosystem process related ecosystem services,remote sensing can help measure spatially explicit parameters.We conclude that acquiring good in-situ measurements and selecting appropriate remote sensor data in terms of resolution are critical for accurate assessment of ecosystem services.
基金supported by National Natural Science Foundation of China (Grant No.40671062) the Third Knowledge Innovation Project of ‘Study on the Regional Eco-economic Development Theory and Patterns',supported by Institute of Geo-graphical Sciences and Natural Resources Research,CAS
文摘The article studies tourism eco-environment of 14 cities of Gangsu Province, China, based on GIS with many kinds of multi-subject spatial database, such as remote sensing data, observation data and literature data. The research results were as follows. First, spatial features of 14 cities' tourism eco-environment are displayed with five levels of vulnerability respectively. The vulnerability in Gansu becomes worse from Gannan City, located in southern Gansu to Hexi Corridor which lies in northwestern Gansu. Second, the areas of above the middle vulnerability level make up 75% of the total areas of Gansu Province. Third, more than 70% of high-level human and natural tourism resources are in the areas with high vulnerability eco-environment. Fourth, it is crucial to develop comprehensive tourism industry in order to improve the harmonious development between tourism industry and eco-environment in Gansu Province.
基金Under the auspices of National High-tech Research and Development Program of China (863 Project) (No. 2006AA12Z207)
文摘The spatial distribution of meteorological elements is important for understanding the regional meteorology and climate changes. However, previous studies rarely focused on the daily changes of the spatial patterns of meteorological elements due to the limitation of remote sensing (RS) techniques and traditional meteorological methods. In this paper, the regional meteorological elements were simulated by the fifth-generation non-hydrostatic Mesoscale Model (MM5), and the spatial patterns of meteorological elements and their diurnal variations were analyzed in landscape level over the Pearl (Zhujiang) River Delta (PRD), China. The results showed that there were several centers of urban heat islands, cold islands, dry islands, wet islands, high wind over the PRD at noon. The diurnal changes of Moran I of meteorological elements were obvious and they reached the extremum at noon and 2-3 hours after the sunrise. The landscape indices of meteorological elements, such as area-weighted mean Fractal Dimension Index (FRAC_AM), Landscape Shape lndex (LSI), Shannon's Diversity Index (SHDI) and Contagion lndex (CONTAG), were more variable at about the sunrise, noon and sunset. The occurrence of wave crests and vales of landscape indices was affected by the surface net radiation, turbulence and local circumfluence. The spatial patterns of meteorological elements correlated well with the land surface, thermal exchanges and local circumfluence. A new approach combining GIS, RS and numerical simulations technologies and the landscape ecology method was presented to analyze spatial patterns of meteorological elements, which may be useful for studying global and regional climate changes.
文摘The construction of an ecological city has two founda- tional platforms: the small platform, namely urban district or simply called as "city ecosystem"; and the big platform, namely around city district in certain region scope or also referred to as "city-region ecosystem". The construction of an ecological city must be launched in the dual spatial criteria: in city (urban district) criterion—optimizing the city ecosystem; in city-region (city territory) criterion—optimizing the city-region ecosystem. Luoy-ang has the bright characteristic and the typical image within cities of China, and even in the world. The construction of an ecological city in dual spatial criteria—the city and the city-region—has the vital significance to urbanization advancement and sustainable development in Luoyang. In city-region criterion, the primary mission of Luoyang’s ecological city construction is to create a fine ecological environment platform in its city territory. In city criterion, the basic duty of Luoyang’s ecologic city construction is to enhance the ecological capacity and benefit of the central city.
基金Project supported by the National Natural Science Foundation of China (Nos. 40671099 and 40701084)the Director Program of the Key Laboratory of Soybean Biology of Ministry of Education, China (No. SB05B02)
文摘The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out to examine the dynamics of microbial communities in the rhizosphere of two soybean genotypes grown in a black soil in Northeast China with a long history of soybean cultivation. The two soybean genotypes, Beifeng 11 and Hai 9731, differing in productivity were grown in a mixture of black soil and siliceous sand. The bacterial communities were compared at three zone locations including rhizoplane, rhizosphere, and bulk soil at the third node (V3), early flowering (R1), and early pod (R3) stages using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DCGE) of 16S rDNA. The results of principal component analyses (PCA) showed that the bacterial community structure changed with growth stage. Spatially, the bacterial communities in the rhizoplane and rhizosphere were significantly different from those in the bulk soil. Nevertheless, the bacterial communities in the rhizoplane were distinct from those in the rhizosphere at the V3 stage, while no obvious differences were found at the R1 and R3 stages. For the two genotypes, the bacterial community structure was similar at the V3 stage, but differed at the R1 and R3 stages. In other words, some bacterial populations became dominant and some others recessive at the two later stages, which contributed to the variation of the bacterial community between the two genotypes. These results suggest that soybean plants can modify the rhizosphere bacterial communities in the black soil, and there existed genotype-specific bacterial populations in the rhizospbere, which may be related to soybean productivity.
文摘The goal of ecopsychology is to awaken the inherent sense of environmental reciprocity that lies within the ecological unconsciousness. Proclaiming the spirit of ecopsychology, Theodore Roszak argues that psychotherapy is an urban movement, but human beings can never heal themselves until they reconnect with nature. Other therapies aim at healing the alienation between person and person, person and family, person and society; ecopsychology intends to heal the more primary alienation between the person and the natural environment. Henri Lefebvre's work has revitalized urban studies, geography and planning via concepts like the social production of space. Lefebvre claims that space is not an inert, neutral, and pre-existing given, but rather, an on-going production of spatial relations. According to Lefebvre, space is produced by three types of practice: spatial practices of physical transformation of the environment, practices of representation of space, and everyday practices of representational space. Lefebvre further presents a "differential space," named as such for its dialectical resistance to the forces of homogenization present in "abstract space." The aim of this paper is to trace the ecological voice from Roszak's The Voice of the Earth in Henri Lefebvre's "differential space." Roszak's ecopsychology has formed a differential space, acknowledging that the boundaries of dualism and separations such as mind and body, man and nature should be finally dissolved in terms of ecological sustainability. Within this space, a holistic approach and thinking are created and required to take into account perception of the inextricable relationship between all life and all phenomena.
基金Project supported by the National Natural Science Foundation of China (No. 49801010) the Chinese Academy of Sciences (No. KZ951-A1-202-02-01).
文摘The design and applications of a land information system built upon ARC/INFO and ArcView are presented. The proposed system not only maintains all the advantages of the more conventional implementations but also enhances them in the following ways: 1) the application program interfaces (API) are used to transmit data and messages among different parts of the system; 2) the integrated system can support studies on land evaluations and ecological analyses by efficient management of attribute and spatial data and 3) correspondingly, spatial records and attributive records are linked by the same identifiers (ID). A case study application in Zigui County of the Three Gorges Area in China demonstrates that the system could employ land-use maps and land property data to predicate and analyze the land utilization changes in the past, present and future. The ecological environment analysis can be carried out with the data of land, economics and terrain map used, showing that the system can be widely applied, especially to survey land and environment resources in the countryside area.
基金funded by the Ministry of Foreign Affairs,Norway and Swedish International Development Agency(Sida)supported by the United States Agency for International Development(USAID)National Aeronautics and Space Administration(NASA)
文摘Deforestation is a major environmental challenge in the mountain areas of Pakistan. The study assessed trends in the forest cover in Chitral tehsil over the last two decades using supervised land cover classification of Landsat TM satellite images from 1992, 2000, and 2009, with a maximum likelihood algorithm. In 2009, the forest cover was 10.3% of the land area of Chitral(60,000 ha). The deforestation rate increased from 0.14% per annum in 1992–2000 to 0.54% per annum in 2000–2009, with 3,759 ha forest lost over the 17 years. The spatial drivers of deforestation were investigated using a cellular automaton modelling technique to project future forest conditions. Accessibility(elevation, slope), population density, distance to settlements, and distance to administrative boundary were strongly associated with neighbourhood deforestation. A model projection showed a further loss of 23% of existing forest in Chitral tehsil by 2030, and degradation of 8%, if deforestation continues at the present rate. Arandu Union Council, with 2212 households, will lose 85% of its forest. Local communities have limited income resources and high poverty and are heavily dependent on non-timber forest products for their livelihoods. Continued deforestation will further worsen their livelihood conditions, thus improved conservation efforts are essential.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road (Grant No.XDA2006030101)the National Natural Science Foundation of China (Grant Nos.41671200,U1603242,41671477)
文摘As organchlorine pesticides(OCPs) may be an ecologic threat to mountain environments due to their tendency to deposit and accumulate in mountain regions undergoing long-range air transport, OCPs were analyzed in soils collected from an intermontane basin of the western Tian Shan Mountains, which is the UNESCO protected natural reserve of Issyk-Kul. Total OCP concentrations in the Issyk-Kul region ranged from 4.63 to 414 ng/g dw, of which two extraordinary high OCP concentrations(414 ng/g dw and 213 ng/g dw, respectively) influenced by an abandoned dumping site and urban sewage, respectively, were found. Principal component analysis(PCA) and correlation analysis inferred that the OCP inputs in the east of the Issyk-Kul region were mainly from local endogenous sources, and exogenous input via LRAT processes were prominent in the west and south. Additionally, the isomeric and parent substance/metabolite ratios revealed most pesticides accumulated in this region were from old usage, while DDTs had fresh input because of possibly illegal regional application and a slow degradation from the dumping site. Furthermore, ecological risk assessment revealed that no frequently adverse ecological effects were observed in the Issyk-Kul region, but potential risks on neighbouring organisms induced by p,p'-DDT and γ-HCH in dumping site and urban sewage should be considered when devising an efficient management plan to prevent secondary pollution.
基金Supported by the National Natural Science Foundation of China(No.41006083)the Shandong Provincial Natural Science Foundation,China(No.ZR2010DQ026)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120132130001)the Fundamental Research Funds for the Central Universities(No.201262004)
文摘Trophic structure of fish communities is fundamental for ecosystem-based fisheries management, and trophic spectrum classifies fishes by their positions in food web, which provides a simple summary on the trophic structure and ecosystem function. In this study, both fish biomass and abundance trophic spectra were constructed to study the spatial and seasonal variations in the trophic structure of demersal fish assemblages in Jiaozhou Bay, China. Data were collected from four seasonal bottom trawl surveys in Jiaozhou Bay from February to November in 2011. Trophic levels(TLs) of fishes were determined by nitrogen stable isotope analysis. This study indicated that most of these trophic spectra had a single peak at trophic level(TL) of 3.4–3.7, suggesting that demersal fish assemblages of Jiaozhou Bay were dominated by secondary consumers(eg. Pholis fangi and Amblychaeturichthys hexanema). The spatial and seasonal variations of trophic spectra of Jiaozhou Bay reflected the influence of fish reproduction, fishing pressure and migration of fishes. Two-way analysis of variance(ANOVA) showed that seasonal variations in trophic spectra in Jiaozhou Bay were significant(P <0.05), but variations among different areas were not significant( P >0.05). The trophic spectrum has been proved to be a useful tool to monitor the trophic structure of fish assemblages. This study highlighted the comprehensive application of fish biomass and abundance trophic spectra in the study on trophic structure of fish assemblages.
基金partly funded by The national ecological environment ten years (2000-2010) change remote sensing survey and evaluation project--Chengdu-Chongqing urban agglomeration ecological environment situation and ten years change investigation and assessment (Project No. STSN-12-05)Sino-Norwegian Biodiversity and Climate Change Project (Grant No. C/IV/S//11/242-02)
文摘Assessing the impact of climate change is important for ecosystem conservation and plant recovery, especially in climate sensitive regions. Various studies suggested that the KSppen classification is an effective method to depict climate change. However, these studies were restricted to large scales or of limited accuracy due to uncertainties in climate model projections. In addition, the impact of elevation on the shift of climate zones, as compared with other factors, is less emphasized. To address these issues we compiled the KSppen Climate Classification (period 1961-2olo) for the study area, Sichuan Province, China. The spatial resolution was selected as x km x x km. Sichuan Province may be characterized by 3 main climate classes and 1o subtypes. The east-west gradient of the climatic regimes in Siehuan is represented by the main climate classes, warm temperate climates (C), snow climates (D) and polar climates (E), at which the most abundant class is C. The most abundant subtype is snow climate with dry winter and cool summer (Dwe). Shifts in K/Sppen climate classes reflect the observed trend of increasing temperature. Finally, the elevation showed an obvious impact on the distribution and the change of climate classes in Siehuan Province. The shift of areas covered by KSppen climate classes increases with elevation.
基金Funded by the National 11th Five-Year Technology Based PlanTopic of China (No. 2006BAJ05A13)
文摘The aggregation index (AI) is a classical ecology calculation method, which has been widely used for measuring the aggregation level of spatial patterns within a landscape scale in landscape ecological studies. However, it has certain limitions. For instance, identical results can be obtained by AI even when the shape and number of landscape patches are totally different in two landscape units. Furthermore, the value of AI approaches to 1 if the landscape patch is large enough. To solve these problems, a logical limitation of the original AI equation was revised firstly. Secondly, an improved AI-J was developed based on the awareness of the effects of spatial distribution characteristics of patches and changing spatial scale on AI operation. Finally, the accuracy of AI and AI-J results were evaluated through a case study of city green patches in Chengdu, P. R. China. The results show that the calculated result of AI-J is more precise than that of AI and AI-J can be used to compare a certain landscape class under different spatial scales.