Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, tel...Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interest- ing new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories [Current Zoology 56 (6): 714-727, 2010].展开更多
The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. T...The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. The starches of two sorghum landraces of white and pigmented kernels growing in hyper arid environmental conditions showed significant differences in granule size, amylose content and thermal behavior which ultimately affect the physicochemical and functional properties. When observed using environmental scanning electron microscopy (ESEM). The starch granules showed polyhedral shape. Some of them showed pinholes. The granular size ranged between 6.325-39.905 μm and 7.096-44.774 μm, respectively for white and red sorghum starches. The granule size distribution was unimodal. The amylose content in white sorghum starch (27.1%) was higher than that in red sorghum (24.8%). Differential scanning calorimetry (DSC) analysis revealed that sorghum starches present higher temperatures at the peak (70.60℃ and 72.28℃ for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 J/g and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches. The determination of these properties is relevant to the comprehension of starch and starch-based foods digestibility in order to direct them towards the specific applications in food and nonfood sectors.展开更多
Survival of the plant-growth promoting rhizobacteria (PGPR) strain Pseudomonasfluorescens 92 in two batches ofbiosolids and soil amended with them and functional and structural shifts occurring in the resident bacte...Survival of the plant-growth promoting rhizobacteria (PGPR) strain Pseudomonasfluorescens 92 in two batches ofbiosolids and soil amended with them and functional and structural shifts occurring in the resident bacterial communities were assessed. Viability of the rifampicin resistant gfp-tagged P. fluorescens 92RTcgfp, inoculated in microcosms consisting of biosolids, soil amended with biosolids and soil, drastically decreased 3-7 days after inoculation in treatments containing biosolids and soil amended with them. The PGPR counts in biosolids were always lower than in soil throughout the experiment whereas, in soil amended with biosolids, were similar or higher depending on the batch of biosolid. Analysis of the community-level physiological profiling (CLPP) revealed a strong impact of the strain on the metabolic activities, as seen in a general uniformity of the inoculated microcosms profiles. According to single-strand conformation polymorphism (SSCP) analysis, the presence of the PGPR had no effect on the resident soil and biosolid eubacterial population, whereas it induced a transient shift in the composition of the resident pseudomonads. In conclusion, biosolids themselves are not suitable as inoculum vehicle for the PGPR nevertheless, their combined incorporation into soil increases the inoculum survival and buffers the competition effects with the resident communities.展开更多
Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April...Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April(spring) and October(fall),2006.A total of 27 species of mesozooplankton were identified in spring and 58 species in fall.Dominant species were Oithona tenuis,Flaccisagitta enflata,Penilia avirostris and Centropages tenuiremis in spring,shifting to Microsetella norvegica,Oithona tenuis and Parvocalanus crassirostris in fall.Higher mesozooplankton abundance was found at Aotou Cove and Dapeng'ao Cove compared to other stations,indicating the influence of eutrophication on mesozooplankton community in the Daya Bay.The outbreak of Noctiluca scintillans bloom in spring reduced the species diversity and abundance of mesozooplankton.展开更多
With the development of science and technology and the rapid growth of productive forees new and high technology industries have. For example, computer, mobile phone, etc. are increasingly popular, especially hi-tech ...With the development of science and technology and the rapid growth of productive forees new and high technology industries have. For example, computer, mobile phone, etc. are increasingly popular, especially hi-tech products updating more and more quickly, which has initiated some problems: resources depletion, environmental pollution, ecosystems damage, etc. While people are enjoying convenient and comfortable life from hi-tech, they are worrying about quantities of e-wastes discharged.In order to reduce the amount and harm of e-wastes, this paper starts from the connotation of the ecological stability of circular economy electronics industry chain (CEEIC, for shorO, uses the food chain principle for reference to describe the links and connection of the electronics industry chain, and selects factors from the three link: production, consumption and recycle to construct indexes system based on their characteristics, with which a scientific evaluation is carried on for CEEIC by using fuzzy comprehensive evaluation.展开更多
The synthesis of inorganic materials with special morphologies with the assistance of biological molecules is a potential development in the field of controllable growth and assembly of nanomaterials. In this paper, B...The synthesis of inorganic materials with special morphologies with the assistance of biological molecules is a potential development in the field of controllable growth and assembly of nanomaterials. In this paper, BaF2 nanocrystals in patterns of well-defined linear and erythrocyte-shaped structure were synthesized with the assistance of Escherichia coil DNA. Morphology and the arrangement of BaF2 particles on DNA were controllable by altering the reaction condition. Square nanoparticles arranged in linear chains were gained with the assistance of normal DNA; while, erythrocyte-shaped BaF2 nanospheres were synthesized with the assistance of denatured DNA. Besides, the influences of solvent, reaction temperature, concentration of reactants and the heating time on the morphology of the BaF2 particles were studied.展开更多
The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the mi...The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the microscopic process, a population morphologically structured model is proposed, in which three morphological compartment and their interactions were considered, and the heterogeneity of hyphal growth was included. The model was applied to describe the microscopic growth of Streptomyces tendae and Geotrichum candidum with good agreement. From model prediction, it is concluded that if the number of hyphae is large enough (macroscopic growth), the specific growth rate of filamentous microorganism and the ratio of morphological forms in hyphae will become constant.展开更多
Edaphic biota significantly affects several essential ecological functions such as C-storage, nutrient turnover, and productivity.However, it is not completely understood how belowground animal contribution to these f...Edaphic biota significantly affects several essential ecological functions such as C-storage, nutrient turnover, and productivity.However, it is not completely understood how belowground animal contribution to these functions changes in grasslands subject to different land use types. A microcosm experiment was carried out to test the effect of a tritrophic food chain on CO_2 release from grassland soils. Soil was collected from three differently managed grassland systems(meadow, pasture, and mown pasture) located in three distinct German regions that cover a north-south gradient of approximately 500 km. The tritrophic food chain comprised natural edaphic microflora, nematodes, and predatory gamasid mites. The experimental design involved a full factorial combination of the presence and absence of nematodes and gamasid mites. Nematodes significantly increased the CO_2 emissions in most treatments,but the extent of this effect varied with land use type. The fact that grazing by nematodes stimulated the metabolic activity of the edaphic microflora over a wide range of grassland soils highlighted the critical impact of the microfauna on ecosystem services associated with soil organic matter dynamics. Gamasids slightly amplified the effect of nematodes on microbial metabolic activity,but only in the pastures. This effect was most probably due to the control of nematode abundance. The fact that gamasid addition also augmented the impact of environmental conditions on nematode-induced modulation of soil respiration highlighted the need for including land use differences while evaluating soil fauna contribution to soil processes. To conclude, the differential response of the investigated tritrophic food chain to different grassland management systems suggests that adverse effects of land use intensification on important soil processes such as atmospheric C-release could potentially be reduced by using management methods that preserve essential features of the belowground food web.展开更多
This paper studies a three tier ecological food chain model consisting of nutrient,autotroph,and herbivore populations.Regeneration of nutrient from dead autotroph and herbivore biomass bydecomposers present in the so...This paper studies a three tier ecological food chain model consisting of nutrient,autotroph,and herbivore populations.Regeneration of nutrient from dead autotroph and herbivore biomass bydecomposers present in the soil is included.The time required for maturation of the herbivore populationis incorporated as a distributed time delay.Next,the authors introduce the time lag requiredfor regeneration of nutrient from the dead herbivore as a discrete time delay.Stability and bifurcationbehavior of the one-and two-delay models are carried out and a comparative study of the significanceof these delays in controlling the system dynamics is performed.Numerical simulations are done tojustify analytical results.展开更多
To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected fr...To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.展开更多
文摘Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how telomeres may relate to growth, survival and lifespan in natural populations. We finish by examining interest- ing new connections between telomeres and the glucocorticoid stress response. Glucocorticoids are often employed as indices of physiological condition, and there is evidence that the glucocorticoid stress response is adaptive. We suggest that one way that glucocorticoids impact organismal survival is through elevated oxidative stress and telomere loss. Future work needs to establish and explore the link between the glucocorticoid stress response and telomere shortening in natural populations. If a link is found, it provides an explanatory mechanism by which environmental perturbation impacts life history trajectories [Current Zoology 56 (6): 714-727, 2010].
文摘The starches were isolated by alkaline extraction from white and red sorghum, predominant cultivars in the Sahara of Algeria. Morphological, thermal properties and amylose content of isolated starches were examined. The starches of two sorghum landraces of white and pigmented kernels growing in hyper arid environmental conditions showed significant differences in granule size, amylose content and thermal behavior which ultimately affect the physicochemical and functional properties. When observed using environmental scanning electron microscopy (ESEM). The starch granules showed polyhedral shape. Some of them showed pinholes. The granular size ranged between 6.325-39.905 μm and 7.096-44.774 μm, respectively for white and red sorghum starches. The granule size distribution was unimodal. The amylose content in white sorghum starch (27.1%) was higher than that in red sorghum (24.8%). Differential scanning calorimetry (DSC) analysis revealed that sorghum starches present higher temperatures at the peak (70.60℃ and 72.28℃ for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 J/g and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches. The determination of these properties is relevant to the comprehension of starch and starch-based foods digestibility in order to direct them towards the specific applications in food and nonfood sectors.
文摘Survival of the plant-growth promoting rhizobacteria (PGPR) strain Pseudomonasfluorescens 92 in two batches ofbiosolids and soil amended with them and functional and structural shifts occurring in the resident bacterial communities were assessed. Viability of the rifampicin resistant gfp-tagged P. fluorescens 92RTcgfp, inoculated in microcosms consisting of biosolids, soil amended with biosolids and soil, drastically decreased 3-7 days after inoculation in treatments containing biosolids and soil amended with them. The PGPR counts in biosolids were always lower than in soil throughout the experiment whereas, in soil amended with biosolids, were similar or higher depending on the batch of biosolid. Analysis of the community-level physiological profiling (CLPP) revealed a strong impact of the strain on the metabolic activities, as seen in a general uniformity of the inoculated microcosms profiles. According to single-strand conformation polymorphism (SSCP) analysis, the presence of the PGPR had no effect on the resident soil and biosolid eubacterial population, whereas it induced a transient shift in the composition of the resident pseudomonads. In conclusion, biosolids themselves are not suitable as inoculum vehicle for the PGPR nevertheless, their combined incorporation into soil increases the inoculum survival and buffers the competition effects with the resident communities.
基金supported by the National Nature Science Foundation of China(Nos.41276159,41130855)the Special Fund of Basic Research for Centre Commonweal Scientific Research Institute(Nos.2007ZD07,2011TS06,2013TS07)
文摘Mesozooplankton are key components of coastal ecosystems,linking the microbial food web to the classic food chain.In this study,species composition and abundance of mesozooplankton is studied for the Daya Bay in April(spring) and October(fall),2006.A total of 27 species of mesozooplankton were identified in spring and 58 species in fall.Dominant species were Oithona tenuis,Flaccisagitta enflata,Penilia avirostris and Centropages tenuiremis in spring,shifting to Microsetella norvegica,Oithona tenuis and Parvocalanus crassirostris in fall.Higher mesozooplankton abundance was found at Aotou Cove and Dapeng'ao Cove compared to other stations,indicating the influence of eutrophication on mesozooplankton community in the Daya Bay.The outbreak of Noctiluca scintillans bloom in spring reduced the species diversity and abundance of mesozooplankton.
文摘With the development of science and technology and the rapid growth of productive forees new and high technology industries have. For example, computer, mobile phone, etc. are increasingly popular, especially hi-tech products updating more and more quickly, which has initiated some problems: resources depletion, environmental pollution, ecosystems damage, etc. While people are enjoying convenient and comfortable life from hi-tech, they are worrying about quantities of e-wastes discharged.In order to reduce the amount and harm of e-wastes, this paper starts from the connotation of the ecological stability of circular economy electronics industry chain (CEEIC, for shorO, uses the food chain principle for reference to describe the links and connection of the electronics industry chain, and selects factors from the three link: production, consumption and recycle to construct indexes system based on their characteristics, with which a scientific evaluation is carried on for CEEIC by using fuzzy comprehensive evaluation.
基金Supported by the National Natural Science Foundation of China(Nos.21371149,21671168)the Natural Science Foundation of Hebei Province(Nos.B2016203498,GCC2014009)
文摘The synthesis of inorganic materials with special morphologies with the assistance of biological molecules is a potential development in the field of controllable growth and assembly of nanomaterials. In this paper, BaF2 nanocrystals in patterns of well-defined linear and erythrocyte-shaped structure were synthesized with the assistance of Escherichia coil DNA. Morphology and the arrangement of BaF2 particles on DNA were controllable by altering the reaction condition. Square nanoparticles arranged in linear chains were gained with the assistance of normal DNA; while, erythrocyte-shaped BaF2 nanospheres were synthesized with the assistance of denatured DNA. Besides, the influences of solvent, reaction temperature, concentration of reactants and the heating time on the morphology of the BaF2 particles were studied.
文摘The growth of filamentous microorganism is contributed by tip extension and branching. The microscopic growth of filamentous microorganism means the growth process from one or a few spores. In order to describe the microscopic process, a population morphologically structured model is proposed, in which three morphological compartment and their interactions were considered, and the heterogeneity of hyphal growth was included. The model was applied to describe the microscopic growth of Streptomyces tendae and Geotrichum candidum with good agreement. From model prediction, it is concluded that if the number of hyphae is large enough (macroscopic growth), the specific growth rate of filamentous microorganism and the ratio of morphological forms in hyphae will become constant.
基金funded by the German Research Society (DFG) Priority Program 1374 "InfrastructureBiodiversity-Exploratories" (DFG-Ref. No. 1374)the "The functional role of soil biodiversity in grassland habitats: effects of land use and climate on niche properties, decomposition and greenhouse gas fluxes" (SOILFUN) project
文摘Edaphic biota significantly affects several essential ecological functions such as C-storage, nutrient turnover, and productivity.However, it is not completely understood how belowground animal contribution to these functions changes in grasslands subject to different land use types. A microcosm experiment was carried out to test the effect of a tritrophic food chain on CO_2 release from grassland soils. Soil was collected from three differently managed grassland systems(meadow, pasture, and mown pasture) located in three distinct German regions that cover a north-south gradient of approximately 500 km. The tritrophic food chain comprised natural edaphic microflora, nematodes, and predatory gamasid mites. The experimental design involved a full factorial combination of the presence and absence of nematodes and gamasid mites. Nematodes significantly increased the CO_2 emissions in most treatments,but the extent of this effect varied with land use type. The fact that grazing by nematodes stimulated the metabolic activity of the edaphic microflora over a wide range of grassland soils highlighted the critical impact of the microfauna on ecosystem services associated with soil organic matter dynamics. Gamasids slightly amplified the effect of nematodes on microbial metabolic activity,but only in the pastures. This effect was most probably due to the control of nematode abundance. The fact that gamasid addition also augmented the impact of environmental conditions on nematode-induced modulation of soil respiration highlighted the need for including land use differences while evaluating soil fauna contribution to soil processes. To conclude, the differential response of the investigated tritrophic food chain to different grassland management systems suggests that adverse effects of land use intensification on important soil processes such as atmospheric C-release could potentially be reduced by using management methods that preserve essential features of the belowground food web.
基金supported by the Department of Science and Technology, Ministry of Human Resource Development, Govt. of India under Grant No. SR/S4/MS:296/05
文摘This paper studies a three tier ecological food chain model consisting of nutrient,autotroph,and herbivore populations.Regeneration of nutrient from dead autotroph and herbivore biomass bydecomposers present in the soil is included.The time required for maturation of the herbivore populationis incorporated as a distributed time delay.Next,the authors introduce the time lag requiredfor regeneration of nutrient from the dead herbivore as a discrete time delay.Stability and bifurcationbehavior of the one-and two-delay models are carried out and a comparative study of the significanceof these delays in controlling the system dynamics is performed.Numerical simulations are done tojustify analytical results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40901055 and 40872111)the Key Program of Chinese Ministry of Education (Grant No. 109151)+1 种基金the National Basic Research Program of China (Grant No. 2010CB950202)the NSFC National Innovative Research Team Project (Grant No. 41021091)
文摘To investigate characteristics of H isotope variation in long-chain n-alkanes (δDn-alkanes) from higher plants in surface soils under a single ecosystem, 12 samples from a basalt regolith were randomly collected from Damaping in Wanquan County of Zhangjiakou in North China. Molecular distribution and C (δ^13Cn-alkanes) and H isotopes of long-chain n-alkanes, as well as C isotopes of TOC (δ^13CTOC), were analyzed. Both δ^13CTOC and δ^13Cn-alkanes values from four representative dominant long-chain n-alkanes (n-C27, n-C29, n-C31, n-C33) derived from terrestrial higher plants show minor variations among the 12 samples, indicating the major contributor is from local grasses with a uniform C3 photosynthetic pathway. In contrast, variations in δ^13Cn-alkanes values of the four long-chain n-alkanes are relatively large, with the more abundant homologs generally showing more negative δDn-alkanes values and less variation. However, variation of 〈30‰ among weighted averaged δDn-alkanes values of the four long-chain n-alkanes is not only less than that among δDn-alkanes values for different modern terrestrial C3 grasses from the specific locations, but also less than the literature values of δDn-alkanes of long-chain n-alkanes for single species over different seasons. Thus, because the sources of long-chain n-alkanes in surface soils and sediments are similarly from multiple individual plants, our results are significant in confirming that paleoclimatic, paleoenvironmental and paleohydrological information can be interpreted more accurately from δDn-alkanes values of long-chain n-alkanes from sediments, particularly terrestrial sediments with organic matter derived from in-situ plants.