Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ...Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.展开更多
A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R~2)values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationshi...In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection.展开更多
Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial...Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.展开更多
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha...Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.展开更多
China is the country with most widely distributed loess area in the world, and its loess area accounts of 6.63% of total nation land area. The landslide disaster occurs frequently for complex natural condition and bec...China is the country with most widely distributed loess area in the world, and its loess area accounts of 6.63% of total nation land area. The landslide disaster occurs frequently for complex natural condition and becomes major factors hindering the social and economic development of loess regions. Through different indexes, the authors divided the landslides into 9 principal types and analyzed the distribution characteristics of loess landslide in time and space, the affecting factors and mechanism of landslides. It is pointed out that time and spatial distributions of landslides are closely correlative to topographic and geomorphic conditions, earthquake and rainfall, and the key influencing factors include topography, geomorphology, new tectonic movements, earthquake activity, surface water, ground water and human activities. The authors emphasized that the natural condition of loess areas was favorable to landslides, human activities impelled its occurrence and that controlling the loess landslide was an urgent task for sustainable development in the loess zone.展开更多
Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and ...Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and optical properties of the as-synthesized products were investigated by XRD, TEM, SEM, EDS, FT-IR, Raman spectroscopy and PL. The effects of pH of precursor solution, precursor concentration, reaction temperature, and time were investigated. The results reveal that pH of the precursor solution not only plays an important role in determining the phase of the as-synthesized products, but also has a significant influence on the morphologies of the samples. High-quality and uniform octahedrons with an average size of about 700 nm could be easily obtained at the pH value of 12. The possible formation mechanism of octahedral-like La2Sn2O7:Eu3+ microcrystals was briefly proposed. The photoluminescence spectra show that La2Sn2O7:Eu3+ micro-octahedra display stronger emission in the range of 582-592 nm compared with the samples with other shapes.展开更多
Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th...Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.展开更多
SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens o...SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.展开更多
[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by ex...[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by experiment in orchard field and soil simulative experiment. [ Result] The biological organic fertilizers improved the activities of enzymes like polyphenol oxidase, urease, phosphatase, etc. in root-zone soil, promoted the passivation of heavy metals like Cd^2+ , Pb^2+ , Cr^3+ , As^8+ , etc. in root-zone soil, increased the quantities of useful active bacterium like beneficial fungi, actinomycetes, bacterium, etc. and decreased the quantities of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necutrix/Helicobasidium mompa, nematode, etc. [ Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.展开更多
A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ra...A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.展开更多
This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of ...This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.展开更多
On the basis of analysis of the present situation of the ecological benefit compensation in China and foreign countries, this paper discusses the necessity, principle and approach of establishing the compensation mech...On the basis of analysis of the present situation of the ecological benefit compensation in China and foreign countries, this paper discusses the necessity, principle and approach of establishing the compensation mechanism of forest ecological benefit, as well as compensation standard in order to provide scientific basis for further perfecting the compensation mechanism of forest ecological engineering benefit in China. It is suggested that setting up the compensation mechanism of forest ecological benefit can not only provide the steady funds source of managing and protecting forest resources, but resolve radically the dynamic and mechanism problems of commonweal forest ecological engineering construction, which will produce a widespread and profound influence on China forestry and ecological construction.展开更多
Through field experiment,special biological fertilizer and cake fertilizer were applied collectively to tobacco,and chemical compositions of Wanxi flue-cured tobacco leaves were researched.The results showed that the ...Through field experiment,special biological fertilizer and cake fertilizer were applied collectively to tobacco,and chemical compositions of Wanxi flue-cured tobacco leaves were researched.The results showed that the increase of biological organic fertilizer would significantly improve soil nutrient supplying capacity.Compared with conventional fertilization,the contents of reducing sugar,total sugar and starch in different parts of tobaccos which were applied with biological organic fertilizer were closer to standards of excellent tobacco.In the treatment,the ratio of reducing sugar and nicotine in tobacco was more suitable in middle and lower parts of the plant and the contents of total N,nicotine and chlorine in tobacco were lowered,improving tobacco quality.展开更多
This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The pho...This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.展开更多
The embryogenesis, pollen germination, floral character and seed physiology of the endangered plant Manglietia aromatica Dandy were investigated. Based on this study, this species has very low seed set rate. The abort...The embryogenesis, pollen germination, floral character and seed physiology of the endangered plant Manglietia aromatica Dandy were investigated. Based on this study, this species has very low seed set rate. The abortion rate of functional megaspores in all the ovules is 27.9%, the egg cell abortion rate of mature embryo sacs is up to 80%, and the germination rate of pollen grains is as low as nearly 0.01%. In addition, the floral structure appears to be another limited factor for the effective pollination of this species. The endangerment mechanism of this species seems to be comprehensive. Human's destroying actions are the direct factors that have made the population degenerate quickly; low reproductive ability and the destroyed environments are the main reasons that prevent the population from renovating and spreading. Therefore, the conservation measures suggested by this study are to research the breed technology, artificial population renovating, in situ conservation, and ex situ conservation.展开更多
[ Objective ] The research aimed to reveal theeffects of excessive Mg^2+ on the germination characteristics of maize and soybean. [ Method ] Eleven concentration gradients of Mg^2+ including 0, 40, 80, 120, 160,200,...[ Objective ] The research aimed to reveal theeffects of excessive Mg^2+ on the germination characteristics of maize and soybean. [ Method ] Eleven concentration gradients of Mg^2+ including 0, 40, 80, 120, 160,200,240,280,320,360 and 400 mmol/L were set up to study the effects of different treatments on such indices as the germination potential, germination rate, fresh weight, dry weight, root length, plant height and stem diameter of maize and soybean. [ Result] With the increasing of Mg^2+ concentration, the germination of maize delayed and the germination rate of soybean obviously decreased, reaching the significant difference at 0.05 level. When Mg^2+ concentration increased, the fresh weight and dry weight of maize and soybean decreased, but maize and soybean showed some adaptability. The growth of radicles and seedlings in maize and soybean were obviously inhibited by Mg^2+ , and atrophy and dysplasia phenomena appeared. [ Conclusion] Excessive Mg^2+ stress has different effects on the germination potential and germination rate of different crops and has obvious poisoning effects on the root and stem growth of crops.展开更多
文摘Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R~2)values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.
文摘In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection.
基金supported by the European Union within the framework of the“National Laboratory for Autonomous Systems”(No.RRF-2.3.1-212022-00002)the Hungarian“Research on prime exploitation of the potential provided by the industrial digitalisation(No.ED-18-2-2018-0006)”the“Research on cooperative production and logistics systems to support a competitive and sustainable economy(No.TKP2021-NKTA-01)”。
文摘Research of autonomous manufacturing systems is motivated both by the new technical possibilities of cyber-physical systems and by the practical needs of the industry.Autonomous operation in semi-structured industrial environments can now be supported by advanced sensor technologies,digital twins,artificial intelligence and novel communication techniques.These enable real-time monitoring of production processes,situation recognition and prediction,automated and adaptive(re)planning,teamwork and performance improvement by learning.This paper summarizes the main requirements towards autonomous industrial robotics and suggests a generic workflow for realizing such systems.Application case studies will be presented from recent practice at HUN-REN SZTAKI in a broad range of domains such as assembly,welding,grinding,picking and placing,and machining.The various solutions have in common that they use a generic digital twin concept as their core.After making general recommendations for realizing autonomous robotic solutions in the industry,open issues for future research will be discussed.
文摘Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.
基金This article was supported by the Science and Technology Ministry of China (Grant No. 2002BA516A16-02) the Science Foundation of Chinese Academy of Forestry (Grant No.200114).
文摘China is the country with most widely distributed loess area in the world, and its loess area accounts of 6.63% of total nation land area. The landslide disaster occurs frequently for complex natural condition and becomes major factors hindering the social and economic development of loess regions. Through different indexes, the authors divided the landslides into 9 principal types and analyzed the distribution characteristics of loess landslide in time and space, the affecting factors and mechanism of landslides. It is pointed out that time and spatial distributions of landslides are closely correlative to topographic and geomorphic conditions, earthquake and rainfall, and the key influencing factors include topography, geomorphology, new tectonic movements, earthquake activity, surface water, ground water and human activities. The authors emphasized that the natural condition of loess areas was favorable to landslides, human activities impelled its occurrence and that controlling the loess landslide was an urgent task for sustainable development in the loess zone.
基金Project (07C26214301746) supported by Innovation Foundation of Ministry of Science and Technology, ChinaProject (2010GXNSFB013008) supported by Guangxi Natural Science Foundation, ChinaProject (2009bsxt001) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘Pyrochlore structure La2Sn2O7:Eu3+ microcrystals with uniform octahedron shape were successfully synthesized via a hydrothermal route at 180 °C for 36 h. The crystal structure, particle size, morphologies, and optical properties of the as-synthesized products were investigated by XRD, TEM, SEM, EDS, FT-IR, Raman spectroscopy and PL. The effects of pH of precursor solution, precursor concentration, reaction temperature, and time were investigated. The results reveal that pH of the precursor solution not only plays an important role in determining the phase of the as-synthesized products, but also has a significant influence on the morphologies of the samples. High-quality and uniform octahedrons with an average size of about 700 nm could be easily obtained at the pH value of 12. The possible formation mechanism of octahedral-like La2Sn2O7:Eu3+ microcrystals was briefly proposed. The photoluminescence spectra show that La2Sn2O7:Eu3+ micro-octahedra display stronger emission in the range of 582-592 nm compared with the samples with other shapes.
基金Project (ZR2011EL023) supported by the Natural Science Foundation of Shandong Province,ChinaProject (12CX04057A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.
基金Project(201206375003)supported by the China Scholarship Council
文摘SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.
基金Supported by Natural Science Foundation of Liaoning Province(20082131)~~
文摘[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by experiment in orchard field and soil simulative experiment. [ Result] The biological organic fertilizers improved the activities of enzymes like polyphenol oxidase, urease, phosphatase, etc. in root-zone soil, promoted the passivation of heavy metals like Cd^2+ , Pb^2+ , Cr^3+ , As^8+ , etc. in root-zone soil, increased the quantities of useful active bacterium like beneficial fungi, actinomycetes, bacterium, etc. and decreased the quantities of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necutrix/Helicobasidium mompa, nematode, etc. [ Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.
基金Project (20090162120080) supported by Doctoral Fund of Ministry of Education, ChinaProject (20070410989) supported by China Postdoctoral Science FoundationProject(748310000) supported by Central South University Science Foundation for Youths, China
文摘A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.
文摘This paper analyzed how nutrient silicon and water temperature influenced the variation of phytoplankton growth and the change of its assemblage structure, and probed the different characteristics of the variation of phytoplankton growth and the different profiles of the change of its assemblage structure influenced by nutrient silicon and water temperature. Taking Jiaozhou Bay for example, this paper showed the process of both the variation of phytoplankton growth and the change of its assemblage structure, unveiled the mechanism of nutrient silicon and water temperature influencing the variation of phytoplankton growth and the change of its assemblage structure, and determined that nutrient silicon and water temperature were the motive power for the healthy running of the marine ecosystem.
基金this study was supported by National Forestry Sci-ence and Technology Support Program (No.2006BAD03A15)Key laboratory of Forest Silvculture of the State Forestry Ministration’ Sus-tentation Fund
文摘On the basis of analysis of the present situation of the ecological benefit compensation in China and foreign countries, this paper discusses the necessity, principle and approach of establishing the compensation mechanism of forest ecological benefit, as well as compensation standard in order to provide scientific basis for further perfecting the compensation mechanism of forest ecological engineering benefit in China. It is suggested that setting up the compensation mechanism of forest ecological benefit can not only provide the steady funds source of managing and protecting forest resources, but resolve radically the dynamic and mechanism problems of commonweal forest ecological engineering construction, which will produce a widespread and profound influence on China forestry and ecological construction.
文摘Through field experiment,special biological fertilizer and cake fertilizer were applied collectively to tobacco,and chemical compositions of Wanxi flue-cured tobacco leaves were researched.The results showed that the increase of biological organic fertilizer would significantly improve soil nutrient supplying capacity.Compared with conventional fertilization,the contents of reducing sugar,total sugar and starch in different parts of tobaccos which were applied with biological organic fertilizer were closer to standards of excellent tobacco.In the treatment,the ratio of reducing sugar and nicotine in tobacco was more suitable in middle and lower parts of the plant and the contents of total N,nicotine and chlorine in tobacco were lowered,improving tobacco quality.
基金Supported by the National Natural Science Foundation of China(31060045,31260091)~~
文摘This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins.
文摘The embryogenesis, pollen germination, floral character and seed physiology of the endangered plant Manglietia aromatica Dandy were investigated. Based on this study, this species has very low seed set rate. The abortion rate of functional megaspores in all the ovules is 27.9%, the egg cell abortion rate of mature embryo sacs is up to 80%, and the germination rate of pollen grains is as low as nearly 0.01%. In addition, the floral structure appears to be another limited factor for the effective pollination of this species. The endangerment mechanism of this species seems to be comprehensive. Human's destroying actions are the direct factors that have made the population degenerate quickly; low reproductive ability and the destroyed environments are the main reasons that prevent the population from renovating and spreading. Therefore, the conservation measures suggested by this study are to research the breed technology, artificial population renovating, in situ conservation, and ex situ conservation.
基金Key Project of‘Rejuvenating the Northeast China’ Science and Technology Action Plan of Chinese Academy of Sciences(DB2X-2-027)National Key Basic Research Program(2004CB418506)~~
文摘[ Objective ] The research aimed to reveal theeffects of excessive Mg^2+ on the germination characteristics of maize and soybean. [ Method ] Eleven concentration gradients of Mg^2+ including 0, 40, 80, 120, 160,200,240,280,320,360 and 400 mmol/L were set up to study the effects of different treatments on such indices as the germination potential, germination rate, fresh weight, dry weight, root length, plant height and stem diameter of maize and soybean. [ Result] With the increasing of Mg^2+ concentration, the germination of maize delayed and the germination rate of soybean obviously decreased, reaching the significant difference at 0.05 level. When Mg^2+ concentration increased, the fresh weight and dry weight of maize and soybean decreased, but maize and soybean showed some adaptability. The growth of radicles and seedlings in maize and soybean were obviously inhibited by Mg^2+ , and atrophy and dysplasia phenomena appeared. [ Conclusion] Excessive Mg^2+ stress has different effects on the germination potential and germination rate of different crops and has obvious poisoning effects on the root and stem growth of crops.