A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized seq...A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized sequence and its higher order statistics are used to identify the channel parameters. Compared to traditional equalization methods, the proposed approach is with a simple architecture, and does not need learning sequences. Computer simulations show the validity of the proposed method.展开更多
Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT...Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.展开更多
文摘A new approach for blind equalization and channel identification is proposed in this paper. The equalization scheme is based on over sampling technique and an independent component analysis network. The equalized sequence and its higher order statistics are used to identify the channel parameters. Compared to traditional equalization methods, the proposed approach is with a simple architecture, and does not need learning sequences. Computer simulations show the validity of the proposed method.
基金Supported by Tianjin Municipal Science and Technology Commission (No.09JCYBJC02200)
文摘Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and independent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were carried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.