期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
“相识”、“酒头”考辨 被引量:1
1
作者 启光 《辞书研究》 2000年第4期155-157,共3页
关键词 “相识” “酒头” 俗语词 古代词汇 词义
全文增补中
An automatic seismic signal detection method based on fourth-order statistics and applications 被引量:2
2
作者 刘希强 蔡寅 +4 位作者 赵瑞 曲保安 赵银刚 冯志军 李红 《Applied Geophysics》 SCIE CSCD 2014年第2期128-138,252,共12页
Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect... Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases. 展开更多
关键词 Seismic signal P and S-waves automatic detection correction trigger function
下载PDF
On similarity measures of interval-valued intuitionistic fuzzy sets and their application to pattern recognitions 被引量:29
3
作者 徐泽水 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期139-143,共5页
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H... The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information. 展开更多
关键词 interval-valued intuitionistic fuzzy set SIMILARITY pattern recognition
下载PDF
Classification of Chinese Traditional Drug-"Beimu" (Bulbus Fritillariae) by Pyrolysis High Resolution Gas Chromatography-Pattern Recognition 被引量:2
4
作者 房杏春 李萍 +1 位作者 田琳 安登魁 《Journal of Chinese Pharmaceutical Sciences》 CAS 1992年第2期65-72,共8页
The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples... The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies. 展开更多
关键词 Beimu FRITILLARIA Pyrolysis High Resolution Gas Chromatography Pattern Recognition
下载PDF
Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs 被引量:12
5
作者 柴华 李宁 +4 位作者 肖承文 刘兴礼 李多丽 王才志 吴大成 《Applied Geophysics》 SCIE CSCD 2009年第1期17-29,102,共14页
Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extre... Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective. 展开更多
关键词 Reef-bank reservoirs sedimentary facies lithology borehole image logs pattern recognition
下载PDF
Facial expression recognition based on fuzzy-LDA/CCA 被引量:1
6
作者 周晓彦 郑文明 +1 位作者 邹采荣 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期428-432,共5页
A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o... A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data. 展开更多
关键词 fuzzy linear discriminant analysis canonical correlation analysis facial expression recognition
下载PDF
Identification and Quantification of Non-Spherical Particles 被引量:1
7
作者 曾周末 张宝明 杨庆 《Transactions of Tianjin University》 EI CAS 2002年第2期75-78,共4页
In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the st... In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the statistic characteristics of PDA signal related to irregular particles is analyzed and a method of statistic classification of irregular particles is proposed.It proves that the parameter of PDA signal for irregular particles is an unbiased estimation for spherical ones, the mean of the phase difference is in direct proportion to the mean diameter of particles and the standard deviation of the phase difference increases linearly with the standard deviation of irregular particles. As an application of the identification of irregular objects, fuzzy patterns and similarities of haemocytes are used to recognize and quantify cell samples.The statistic classification of particles is more significant in practice. 展开更多
关键词 particle measurement phase Doppler anemometry statistic classification pattern recognition
下载PDF
Lower Es3 in Zhanhua Sag, Jiyang Depression: a case study for lithofacies classification in lacustrine mud shale 被引量:11
8
作者 Yan Jian-Ping He Xu +4 位作者 Hu Qin-Hong Liang Qiang Tang Hong-Ming Feng Chun-Zhen Geng Bin 《Applied Geophysics》 SCIE CSCD 2018年第2期151-164,361,共15页
Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type Ⅰ or type Ⅱ1 organic matter, taking into account the mineralogy and bedding structure, and type and abunda... Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type Ⅰ or type Ⅱ1 organic matter, taking into account the mineralogy and bedding structure, and type and abundance of organic matter. Using the lower third member of the Shahejie Formation, Zhanhua Sag, Jiyang Depression as the target lithology, we applied core description, thin section observations, electron microscopy imaging, nuclear magnetic resonance, and fullbore formation microimager (FMI) to study the mud shale lithofacies and features. First, the lithofacies were classified by considering the bedding structure, lithology, and organic matter and then a lithofacies classification scheme of lacustrine mud shale was proposed. Second, we used optimal filtering of logging data to distinguish the lithologies. Because the fractals of logging data are good indicators of the bedding structure, gamma-ray radiation was used to optimize the structural identification. Total organic carbon content (TOC) and pyrolyzed hydrocarbons (S2) were calculated from the logging data, and the hydrogen index (HI) was obtained to identify the organic matter type of the different strata (HI vs Tmax). Finally, a method for shale lithofacies identification based on logging data is proposed for exploring mud shale reservoirs and sweet spots from continuous wellbore profiles. 展开更多
关键词 mud shale lithofacies FILTERING fractals LOGGING
下载PDF
Incremental semi-supervised learning for intelligent seismic facies identification 被引量:2
9
作者 He Su-Mei Song Zhao-Hui +2 位作者 Zhang Meng-Ke Yuan San-Yi Wang Shang-Xu 《Applied Geophysics》 SCIE CSCD 2022年第1期41-52,144,共13页
Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize faci... Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize facies identification with high efficiency and accuracy;however,it depends on the usage of a large amount of well-labeled data.To solve this issue,we propose herein an incremental semi-supervised method for intelligent facies identification.Our method considers the continuity of the lateral variation of strata and uses cosine similarity to quantify the similarity of the seismic data feature domain.The maximum-diff erence sample in the neighborhood of the currently used training data is then found to reasonably expand the training sets.This process continuously increases the amount of training data and learns its distribution.We integrate old knowledge while absorbing new ones to realize incremental semi-supervised learning and achieve the purpose of evolving the network models.In this work,accuracy and confusion matrix are employed to jointly control the predicted results of the model from both overall and partial aspects.The obtained values are then applied to a three-dimensional(3D)real dataset and used to quantitatively evaluate the results.Using unlabeled data,our proposed method acquires more accurate and stable testing results compared to conventional supervised learning algorithms that only use well-labeled data.A considerable improvement for small-sample categories is also observed.Using less than 1%of the training data,the proposed method can achieve an average accuracy of over 95%on the 3D dataset.In contrast,the conventional supervised learning algorithm achieved only approximately 85%. 展开更多
关键词 seismic facies identification semi-supervised learning incremental learning cosine similarity
下载PDF
Identification Method of Gas-Liquid Two-phase Flow Regime Based on Image Multi-feature Fusion and Support Vector Machine 被引量:6
10
作者 周云龙 陈飞 孙斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期832-840,共9页
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide... The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification. 展开更多
关键词 flow regime identification gas-liquid two-phase flow image processing multi-feature fusion support vector machine
下载PDF
Online composite shape recognition based on relevance feedback
11
作者 王强 孙正兴 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期153-158,共6页
This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va... This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient. 展开更多
关键词 sketchy-based user interface online composite shape recognition dynamicuser modeling relevance feedback
下载PDF
WAVELET ANALYSIS OF MODULATED SIGNALS 被引量:1
12
作者 Hu Jianwei Yang Shaoquan 《Journal of Electronics(China)》 2006年第4期490-494,共5页
The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and pha... The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig-nal-to-Noise Ratio (SNR) of 5dB. 展开更多
关键词 Haar wavelet decomposition Modulated signal Modulation recognition
下载PDF
Application of seismic facies and attributes analysis on the identification of Permian igneous rock 被引量:6
13
作者 Xu Yongzhong Yang Haijun +4 位作者 Liu Yongfu Wang Shuangshuangx Wang Shuangshuang Yang Peng Zhao Jixiang 《International Journal of Mining Science and Technology》 2012年第4期471-475,共5页
Seismic facies and attributes analysis techniques are introduced.The geological characteristics of some oil fields in western China are used in conjunction with drilling results and logging data to identify the lithol... Seismic facies and attributes analysis techniques are introduced.The geological characteristics of some oil fields in western China are used in conjunction with drilling results and logging data to identify the lithology,intrusion periods,and distribution range of the Permian igneous rocks in this area.The lithologic classification,the vertical and horizontal distribution,and the intrusion periods of igneous rock were deduced through this study.Combining seismic facies and attributes analysis based on optimization can describe the igneous rock in detail.This is an efficient way to identify lithology and intrusion periods.Using geological data and GR-DT logging cross-plots the Permian igneous rock from TP to TT was divided into three periods.The lithology of the first period is tuff and clasolite with a thickness ranging from 18 to 80 ms.The second is basalt with a thickness ranging from 0 to 20 ms.The third is tuff and clasolite and dacite whose thickness ranges from 60 to 80 ms.These results can help understand the clasolite trap with low amplitude and the lithologic trap of the Carboniferous and Silurian.They can also guide further oil and/or gas exploration. 展开更多
关键词 Seismic faciesAttributes analysisLogging cross-plot lgneous rock
下载PDF
Human Motion Recognition Using Ultra-Wideband Radar and Cameras on Mobile Robot
14
作者 李团结 盖萌萌 《Transactions of Tianjin University》 EI CAS 2009年第5期381-387,共7页
Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness o... Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment. 展开更多
关键词 ultra-wideband radar computer vision pattern recognition human motion mobile robot
下载PDF
Off-Line Identification of Induction Motor Parameters 被引量:1
15
作者 LiuJunfeng LuoHui WanShuyun 《Electricity》 2005年第2期42-48,共7页
This study presented an off-line identification method of induction motor (IM) parameters. Before startup,the inverter drive performed automatically a modified DC test, a locked-rotor test, a no-load test and a step-v... This study presented an off-line identification method of induction motor (IM) parameters. Before startup,the inverter drive performed automatically a modified DC test, a locked-rotor test, a no-load test and a step-voltage test to identify all the parameters of an induction motor. No manual operation and speed signals were required in the process. In order to obtain effective messages and improve the accuracy of identification, the discrete fast Fourier transform (DFFT) and the least-squares were used to process the signals of currents and voltages. A phase-voltage measuring method for motors was also proposed, which measured directly the actual conducting time of three upper switches in the inverter without need for a dead-time compensator. The validity, reliability and accuracy of the presented methods have been verified by the experiments on a VSI-fed IM drive system. 展开更多
关键词 induction motor parameter identification phase-voltage measurement discrete fast Fourier transform
下载PDF
Sedimentary Micro-phase Automatic Recognition Based on BP Neural Network
16
作者 龚声蓉 王朝晖 《Journal of Donghua University(English Edition)》 EI CAS 2004年第3期98-102,共5页
In the process of geologic prospecting and development, it is important to forecast the distribution of gritstone, master the regulation of physical parameter in the reserves mass level. Especially, it is more importa... In the process of geologic prospecting and development, it is important to forecast the distribution of gritstone, master the regulation of physical parameter in the reserves mass level. Especially, it is more important to recognize to rock phase and sedimentary circumstance. In the land level, the study of sedimentary phase and micro-phase is important to prospect and develop. In this paper, an automatic approach based on ANN (Artificial Neural Networks) is proposed to recognize sedimentary phase, the corresponding system is designed after the character of well general curves is considered. Different from the approach extracting feature parameters, the proposed approach can directly process the input curves. The proposed method consists of two steps: The first step is called learning. In this step, the system creates automatically sedimentary micro-phase features by learning from the standard sedimentary micro-phase patterns such as standard electric current phase curves of the well and standard resistance rate curves of the well. The second step is called recognition. In this step, based the results of the learning step, the system classifies automatically by comparing the standard pattern curves of the well to unknown pattern curves of the well. The experiment has demonstrated that the proposed approach is more effective than those approaches used previously. 展开更多
关键词 neural networks BP algorithm sedimentary micro-phase
下载PDF
Phase Analysis and Identification Method for Multiphase Batch Processes with Partitioning Multi-way Principal Component Analysis (MPCA) Model 被引量:3
17
作者 董伟威 姚远 高福荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1121-1127,共7页
Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me... Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring. 展开更多
关键词 batch process multi-way principal component analysis MULTIPHASE process monitoring
下载PDF
Human action recognition based on chaotic invariants 被引量:1
18
作者 夏利民 黄金霞 谭论正 《Journal of Central South University》 SCIE EI CAS 2013年第11期3171-3179,共9页
A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent... A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness. 展开更多
关键词 chaotic system action recognition chaotic invariants dynamic time wrapping (DTW) relevance vector machines(RVM)
下载PDF
Combined iterative cross-correlation demodulation scheme for mixing space borne automatic identification system signals 被引量:1
19
作者 朱守中 王小玲 +1 位作者 姜文利 张锡祥 《Journal of Central South University》 SCIE EI CAS 2013年第3期670-677,共8页
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross... Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions. 展开更多
关键词 space borne automatic identification system combined iterative cross-correlation demodulation scheme bit error rate simulation
下载PDF
Recognition of Similar Weather Scenarios in Terminal Area Based on Contrastive Learning 被引量:2
20
作者 CHEN Haiyan LIU Zhenya +1 位作者 ZHOU Yi YUAN Ligang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第4期425-433,共9页
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design... In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels. 展开更多
关键词 air traffic control terminal area similar weather scenarios(SWSs) image recognition contrastive learning
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部