Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect...Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples...The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.展开更多
Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extre...Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.展开更多
A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree o...A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.展开更多
In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the st...In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the statistic characteristics of PDA signal related to irregular particles is analyzed and a method of statistic classification of irregular particles is proposed.It proves that the parameter of PDA signal for irregular particles is an unbiased estimation for spherical ones, the mean of the phase difference is in direct proportion to the mean diameter of particles and the standard deviation of the phase difference increases linearly with the standard deviation of irregular particles. As an application of the identification of irregular objects, fuzzy patterns and similarities of haemocytes are used to recognize and quantify cell samples.The statistic classification of particles is more significant in practice.展开更多
Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type Ⅰ or type Ⅱ1 organic matter, taking into account the mineralogy and bedding structure, and type and abunda...Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type Ⅰ or type Ⅱ1 organic matter, taking into account the mineralogy and bedding structure, and type and abundance of organic matter. Using the lower third member of the Shahejie Formation, Zhanhua Sag, Jiyang Depression as the target lithology, we applied core description, thin section observations, electron microscopy imaging, nuclear magnetic resonance, and fullbore formation microimager (FMI) to study the mud shale lithofacies and features. First, the lithofacies were classified by considering the bedding structure, lithology, and organic matter and then a lithofacies classification scheme of lacustrine mud shale was proposed. Second, we used optimal filtering of logging data to distinguish the lithologies. Because the fractals of logging data are good indicators of the bedding structure, gamma-ray radiation was used to optimize the structural identification. Total organic carbon content (TOC) and pyrolyzed hydrocarbons (S2) were calculated from the logging data, and the hydrogen index (HI) was obtained to identify the organic matter type of the different strata (HI vs Tmax). Finally, a method for shale lithofacies identification based on logging data is proposed for exploring mud shale reservoirs and sweet spots from continuous wellbore profiles.展开更多
Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize faci...Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize facies identification with high efficiency and accuracy;however,it depends on the usage of a large amount of well-labeled data.To solve this issue,we propose herein an incremental semi-supervised method for intelligent facies identification.Our method considers the continuity of the lateral variation of strata and uses cosine similarity to quantify the similarity of the seismic data feature domain.The maximum-diff erence sample in the neighborhood of the currently used training data is then found to reasonably expand the training sets.This process continuously increases the amount of training data and learns its distribution.We integrate old knowledge while absorbing new ones to realize incremental semi-supervised learning and achieve the purpose of evolving the network models.In this work,accuracy and confusion matrix are employed to jointly control the predicted results of the model from both overall and partial aspects.The obtained values are then applied to a three-dimensional(3D)real dataset and used to quantitatively evaluate the results.Using unlabeled data,our proposed method acquires more accurate and stable testing results compared to conventional supervised learning algorithms that only use well-labeled data.A considerable improvement for small-sample categories is also observed.Using less than 1%of the training data,the proposed method can achieve an average accuracy of over 95%on the 3D dataset.In contrast,the conventional supervised learning algorithm achieved only approximately 85%.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va...This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.展开更多
The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and pha...The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig-nal-to-Noise Ratio (SNR) of 5dB.展开更多
Seismic facies and attributes analysis techniques are introduced.The geological characteristics of some oil fields in western China are used in conjunction with drilling results and logging data to identify the lithol...Seismic facies and attributes analysis techniques are introduced.The geological characteristics of some oil fields in western China are used in conjunction with drilling results and logging data to identify the lithology,intrusion periods,and distribution range of the Permian igneous rocks in this area.The lithologic classification,the vertical and horizontal distribution,and the intrusion periods of igneous rock were deduced through this study.Combining seismic facies and attributes analysis based on optimization can describe the igneous rock in detail.This is an efficient way to identify lithology and intrusion periods.Using geological data and GR-DT logging cross-plots the Permian igneous rock from TP to TT was divided into three periods.The lithology of the first period is tuff and clasolite with a thickness ranging from 18 to 80 ms.The second is basalt with a thickness ranging from 0 to 20 ms.The third is tuff and clasolite and dacite whose thickness ranges from 60 to 80 ms.These results can help understand the clasolite trap with low amplitude and the lithologic trap of the Carboniferous and Silurian.They can also guide further oil and/or gas exploration.展开更多
Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness o...Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.展开更多
This study presented an off-line identification method of induction motor (IM) parameters. Before startup,the inverter drive performed automatically a modified DC test, a locked-rotor test, a no-load test and a step-v...This study presented an off-line identification method of induction motor (IM) parameters. Before startup,the inverter drive performed automatically a modified DC test, a locked-rotor test, a no-load test and a step-voltage test to identify all the parameters of an induction motor. No manual operation and speed signals were required in the process. In order to obtain effective messages and improve the accuracy of identification, the discrete fast Fourier transform (DFFT) and the least-squares were used to process the signals of currents and voltages. A phase-voltage measuring method for motors was also proposed, which measured directly the actual conducting time of three upper switches in the inverter without need for a dead-time compensator. The validity, reliability and accuracy of the presented methods have been verified by the experiments on a VSI-fed IM drive system.展开更多
In the process of geologic prospecting and development, it is important to forecast the distribution of gritstone, master the regulation of physical parameter in the reserves mass level. Especially, it is more importa...In the process of geologic prospecting and development, it is important to forecast the distribution of gritstone, master the regulation of physical parameter in the reserves mass level. Especially, it is more important to recognize to rock phase and sedimentary circumstance. In the land level, the study of sedimentary phase and micro-phase is important to prospect and develop. In this paper, an automatic approach based on ANN (Artificial Neural Networks) is proposed to recognize sedimentary phase, the corresponding system is designed after the character of well general curves is considered. Different from the approach extracting feature parameters, the proposed approach can directly process the input curves. The proposed method consists of two steps: The first step is called learning. In this step, the system creates automatically sedimentary micro-phase features by learning from the standard sedimentary micro-phase patterns such as standard electric current phase curves of the well and standard resistance rate curves of the well. The second step is called recognition. In this step, based the results of the learning step, the system classifies automatically by comparing the standard pattern curves of the well to unknown pattern curves of the well. The experiment has demonstrated that the proposed approach is more effective than those approaches used previously.展开更多
Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for represent...A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is design...In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels.展开更多
基金supported by the National Science and Technology Project(Grant No.2012BAK19B04)the Spark Program of Earthquake Sciences,China Earthquake Administration(Grant No.XH12029)
文摘Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
文摘The combination of pyrolysis high resolution gas chromatography and pat- tern recognition techniques is a powerful tool for the classification of traditional Chinese drug.A study has been completed on 55 Beimu samples of five different geographic origins: Eastern China.Central China.South-western China,North-western China and North-eastern China.Principal component analysis and SIMCA are applied to effectively classifying the samples according to the origin of the plants.The chemical information contained in the high resolution gas chromatographic data is sufficient to characterize the geographic origin of sam- pies.
基金sponsored by the National S&T Major Special Project(No.2008ZX05020-01)
文摘Reef-bank reservoirs are an important target for petroleum exploration in marine carbonates and also an essential supplemental area for oil and gas production in China. Due to the diversity of reservoirs and the extreme heterogeneity of reef-banks, it is very difficult to discriminate the sedimentary facies and lithologies in reef-bank reservoirs using conventional well logs. The borehole image log provides clear identification of sedimentary structures and textures and is an ideal tool for discriminating sedimentary facies and lithologies. After examining a large number of borehole images and cores, we propose nine typical patterns for borehole image interpretation and a method that uses these patterns to discriminate sedimentary facies and lithologies in reeI^bank reservoirs automatically. We also develop software with user-friendly interface. The results of applications in reef-bank reservoirs in the middle Tarim Basin and northeast Sichuan have proved that the proposed method and the corresponding software are quite effective.
基金The National Natural Science Foundation of China (No.60503023,60872160)the Natural Science Foundation for Universities ofJiangsu Province (No.08KJD520009)the Intramural Research Foundationof Nanjing University of Information Science and Technology(No.Y603)
文摘A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.
文摘In commercial applications of phase Doppler anemometry (PDA), the effectiveness of non sphericity of particles is present and the response of PDA system deviates from the theoretical prediction. In this paper, the statistic characteristics of PDA signal related to irregular particles is analyzed and a method of statistic classification of irregular particles is proposed.It proves that the parameter of PDA signal for irregular particles is an unbiased estimation for spherical ones, the mean of the phase difference is in direct proportion to the mean diameter of particles and the standard deviation of the phase difference increases linearly with the standard deviation of irregular particles. As an application of the identification of irregular objects, fuzzy patterns and similarities of haemocytes are used to recognize and quantify cell samples.The statistic classification of particles is more significant in practice.
基金This work was supported by the National Natural Science Foundation of China (Nos. 41202110 and 51674211) and Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) (No. PLN201612), the Applied Basic Research Projects in Sichuan Province (No. 2015JY0200) and the Open Fund Project from Sichuan Key Laboratory of Natural Gas Geology (No. 2015trqdz07).
文摘Oil and gas exploration in lacustrine mud shale has focused on laminated calcareous lithofacies rich in type Ⅰ or type Ⅱ1 organic matter, taking into account the mineralogy and bedding structure, and type and abundance of organic matter. Using the lower third member of the Shahejie Formation, Zhanhua Sag, Jiyang Depression as the target lithology, we applied core description, thin section observations, electron microscopy imaging, nuclear magnetic resonance, and fullbore formation microimager (FMI) to study the mud shale lithofacies and features. First, the lithofacies were classified by considering the bedding structure, lithology, and organic matter and then a lithofacies classification scheme of lacustrine mud shale was proposed. Second, we used optimal filtering of logging data to distinguish the lithologies. Because the fractals of logging data are good indicators of the bedding structure, gamma-ray radiation was used to optimize the structural identification. Total organic carbon content (TOC) and pyrolyzed hydrocarbons (S2) were calculated from the logging data, and the hydrogen index (HI) was obtained to identify the organic matter type of the different strata (HI vs Tmax). Finally, a method for shale lithofacies identification based on logging data is proposed for exploring mud shale reservoirs and sweet spots from continuous wellbore profiles.
基金financially supported by the National Key R&D Program of China(No.2018YFA0702504)the National Natural Science Foundation of China(No.42174152 and No.41974140)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ008 and No.2462020QZDX003)the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-03).
文摘Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize facies identification with high efficiency and accuracy;however,it depends on the usage of a large amount of well-labeled data.To solve this issue,we propose herein an incremental semi-supervised method for intelligent facies identification.Our method considers the continuity of the lateral variation of strata and uses cosine similarity to quantify the similarity of the seismic data feature domain.The maximum-diff erence sample in the neighborhood of the currently used training data is then found to reasonably expand the training sets.This process continuously increases the amount of training data and learns its distribution.We integrate old knowledge while absorbing new ones to realize incremental semi-supervised learning and achieve the purpose of evolving the network models.In this work,accuracy and confusion matrix are employed to jointly control the predicted results of the model from both overall and partial aspects.The obtained values are then applied to a three-dimensional(3D)real dataset and used to quantitatively evaluate the results.Using unlabeled data,our proposed method acquires more accurate and stable testing results compared to conventional supervised learning algorithms that only use well-labeled data.A considerable improvement for small-sample categories is also observed.Using less than 1%of the training data,the proposed method can achieve an average accuracy of over 95%on the 3D dataset.In contrast,the conventional supervised learning algorithm achieved only approximately 85%.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
文摘This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.
文摘The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig-nal-to-Noise Ratio (SNR) of 5dB.
文摘Seismic facies and attributes analysis techniques are introduced.The geological characteristics of some oil fields in western China are used in conjunction with drilling results and logging data to identify the lithology,intrusion periods,and distribution range of the Permian igneous rocks in this area.The lithologic classification,the vertical and horizontal distribution,and the intrusion periods of igneous rock were deduced through this study.Combining seismic facies and attributes analysis based on optimization can describe the igneous rock in detail.This is an efficient way to identify lithology and intrusion periods.Using geological data and GR-DT logging cross-plots the Permian igneous rock from TP to TT was divided into three periods.The lithology of the first period is tuff and clasolite with a thickness ranging from 18 to 80 ms.The second is basalt with a thickness ranging from 0 to 20 ms.The third is tuff and clasolite and dacite whose thickness ranges from 60 to 80 ms.These results can help understand the clasolite trap with low amplitude and the lithologic trap of the Carboniferous and Silurian.They can also guide further oil and/or gas exploration.
基金Supported by National Natural Science Foundation of China(No.50875193)
文摘Cameras can reliably detect human motions in a normal environment, but they are usually affected by sudden illumination changes and complex conditions, which are the major obstacles to the reliability and robustness of the system. To solve this problem, a novel integration method was proposed to combine hi-static ultra-wideband radar and cameras. In this recognition system, two cameras are used to localize the object's region, regions while a radar is used to obtain its 3D motion models on a mobile robot. The recognition results can be matched in the 3D motion library in order to recognize its motions. To confirm the effectiveness of the proposed method, the experimental results of recognition using vision sensors and those of recognition using the integration method were compared in different environments. Higher correct-recognition rate is achieved in the experiment.
文摘This study presented an off-line identification method of induction motor (IM) parameters. Before startup,the inverter drive performed automatically a modified DC test, a locked-rotor test, a no-load test and a step-voltage test to identify all the parameters of an induction motor. No manual operation and speed signals were required in the process. In order to obtain effective messages and improve the accuracy of identification, the discrete fast Fourier transform (DFFT) and the least-squares were used to process the signals of currents and voltages. A phase-voltage measuring method for motors was also proposed, which measured directly the actual conducting time of three upper switches in the inverter without need for a dead-time compensator. The validity, reliability and accuracy of the presented methods have been verified by the experiments on a VSI-fed IM drive system.
文摘In the process of geologic prospecting and development, it is important to forecast the distribution of gritstone, master the regulation of physical parameter in the reserves mass level. Especially, it is more important to recognize to rock phase and sedimentary circumstance. In the land level, the study of sedimentary phase and micro-phase is important to prospect and develop. In this paper, an automatic approach based on ANN (Artificial Neural Networks) is proposed to recognize sedimentary phase, the corresponding system is designed after the character of well general curves is considered. Different from the approach extracting feature parameters, the proposed approach can directly process the input curves. The proposed method consists of two steps: The first step is called learning. In this step, the system creates automatically sedimentary micro-phase features by learning from the standard sedimentary micro-phase patterns such as standard electric current phase curves of the well and standard resistance rate curves of the well. The second step is called recognition. In this step, based the results of the learning step, the system classifies automatically by comparing the standard pattern curves of the well to unknown pattern curves of the well. The experiment has demonstrated that the proposed approach is more effective than those approaches used previously.
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
基金Project(50808025) supported by the National Natural Science Foundation of ChinaProject(20090162110057) supported by the Doctoral Fund of Ministry of Education,China
文摘A new human action recognition approach was presented based on chaotic invariants and relevance vector machines(RVM).The trajectories of reference joints estimated by skeleton graph matching were adopted for representing the nonlinear dynamical system of human action.The C-C method was used for estimating delay time and embedding dimension of a phase space which was reconstructed by each trajectory.Then,some chaotic invariants representing action can be captured in the reconstructed phase space.Finally,RVM was used to recognize action.Experiments were performed on the KTH,Weizmann and Ballet human action datasets to test and evaluate the proposed method.The experiment results show that the average recognition accuracy is over91.2%,which validates its effectiveness.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
基金supported by the Fundamental Research Funds for the Central Universities(NOS.NS2019054,NS2020045)。
文摘In order to improve the recognition accuracy of similar weather scenarios(SWSs)in terminal area,a recognition model for SWS based on contrastive learning(SWS-CL)is proposed.Firstly,a data augmentation method is designed to improve the number and quality of weather scenarios samples according to the characteristics of convective weather images.Secondly,in the pre-trained recognition model of SWS-CL,a loss function is formulated to minimize the distance between the anchor and positive samples,and maximize the distance between the anchor and the negative samples in the latent space.Finally,the pre-trained SWS-CL model is fine-tuned with labeled samples to improve the recognition accuracy of SWS.The comparative experiments on the weather images of Guangzhou terminal area show that the proposed data augmentation method can effectively improve the quality of weather image dataset,and the proposed SWS-CL model can achieve satisfactory recognition accuracy.It is also verified that the fine-tuned SWS-CL model has obvious advantages in datasets with sparse labels.