Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were kil...Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were killed in two coal bursts, following a 6-year period during which there were zero burst fatalities. This paper puts the US experience in the context of worldwide research into coal bursts. It focuses on two major longwall mining coalfields which have struggled with bursts for decades. The Utah experience displays many of the "classic" burst characteristics, including deep cover, strong roof and floor rock, and a direct association between bursts and mining activity. In Colorado, the longwalls of the North Fork Valley (NFV) also work at great depth, but their roof and floor strengths are moderate, and most bursts have occurred during entry development or in headgates, bleeders, or other outby locations. The NFV bursts also are more likely to be associated with geologic structures and large magnitude seismic events. The paper provides a detailed case history to illustrate the experience in each of these coalfields. The paper closes with a brief discussion of how US longwalls have managed the burst risk.展开更多
Mine accidents and injuries are complex and generally characterized by several factors starting from personal to technical, and technical to social characteristics.In this study, an attempt has been made to identify t...Mine accidents and injuries are complex and generally characterized by several factors starting from personal to technical, and technical to social characteristics.In this study, an attempt has been made to identify the various factors responsible for work related injuries in mines and to estimate the risk of work injury to mine workers.The prediction of work injury in mines was done by a step-by-step multivariate logistic regression modeling with an application to case study mines in India.In total, 18 variables were considered in this study.Most of the variables are not directly quantifiable.Instruments were developed to quantify them through a questionnaire type survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.Four variables, age, negative affectivity, job dissatisfaction, and physical hazards, bear significant discriminating power for risk of injury to the workers, comparing between cases and controls in a multivariate situation while controlling all the personal and socio-technical variables.The analysis reveals that negatively affected workers are 2.54 times more prone to injuries than the less negatively affected workers and this factor is a more important risk factor for the case-study mines.Long term planning through identification of the negative individuals, proper counseling regarding the adverse effects of negative behaviors and special training is urgently required.Care should be taken for the aged and experienced workers in terms of their job responsibility and training requirements.Management should provide a friendly atmosphere during work to increase the confidence of the injury prone miners.展开更多
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,ph...In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,physiological function based on life events’vital influence on human errors,establishing causation mechanism model of coal miners’human errors in the perspective of life events by the researching method of structural equation.The research findings show that life events have significantly positive influence on human errors,with a influential effect value of 0.7945 and a influential effect path of‘‘life events—psychological stress—psychological function—physiological function—human errors’’and‘‘life events—psychological stress—physiological function—human errors’’.展开更多
The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circ...The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circumstance,the unstructured, non-Gaussian and nonlinear work-space for robot works.The localization using particle filter was proposed to which is applied in mine rescue robot in unknown under-ground space.Meanwhile,focusing on severe particle sample degeneracy in the primary particle filter,an improved particle filter was proposed to reinforce the stability of particle filter.Be- ing compared with localization using extended Kalman filter through simulation experiment the localization using particle filter is proved to have more locating accuracy in unknown underground space and better computational real-time ability,which solves the pre-local- ization problem of robot underground.展开更多
A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working ...A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.展开更多
The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and o...The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.展开更多
It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Sout...It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.展开更多
This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artifi...This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.展开更多
In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in ...In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limi-tations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advan-tages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With op-timization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.展开更多
文摘Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were killed in two coal bursts, following a 6-year period during which there were zero burst fatalities. This paper puts the US experience in the context of worldwide research into coal bursts. It focuses on two major longwall mining coalfields which have struggled with bursts for decades. The Utah experience displays many of the "classic" burst characteristics, including deep cover, strong roof and floor rock, and a direct association between bursts and mining activity. In Colorado, the longwalls of the North Fork Valley (NFV) also work at great depth, but their roof and floor strengths are moderate, and most bursts have occurred during entry development or in headgates, bleeders, or other outby locations. The NFV bursts also are more likely to be associated with geologic structures and large magnitude seismic events. The paper provides a detailed case history to illustrate the experience in each of these coalfields. The paper closes with a brief discussion of how US longwalls have managed the burst risk.
文摘Mine accidents and injuries are complex and generally characterized by several factors starting from personal to technical, and technical to social characteristics.In this study, an attempt has been made to identify the various factors responsible for work related injuries in mines and to estimate the risk of work injury to mine workers.The prediction of work injury in mines was done by a step-by-step multivariate logistic regression modeling with an application to case study mines in India.In total, 18 variables were considered in this study.Most of the variables are not directly quantifiable.Instruments were developed to quantify them through a questionnaire type survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.Four variables, age, negative affectivity, job dissatisfaction, and physical hazards, bear significant discriminating power for risk of injury to the workers, comparing between cases and controls in a multivariate situation while controlling all the personal and socio-technical variables.The analysis reveals that negatively affected workers are 2.54 times more prone to injuries than the less negatively affected workers and this factor is a more important risk factor for the case-study mines.Long term planning through identification of the negative individuals, proper counseling regarding the adverse effects of negative behaviors and special training is urgently required.Care should be taken for the aged and experienced workers in terms of their job responsibility and training requirements.Management should provide a friendly atmosphere during work to increase the confidence of the injury prone miners.
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金supported by the National Natural Science Foundation of China (No. 71271206)
文摘In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,physiological function based on life events’vital influence on human errors,establishing causation mechanism model of coal miners’human errors in the perspective of life events by the researching method of structural equation.The research findings show that life events have significantly positive influence on human errors,with a influential effect value of 0.7945 and a influential effect path of‘‘life events—psychological stress—psychological function—physiological function—human errors’’and‘‘life events—psychological stress—physiological function—human errors’’.
基金the National Natural Science Foundation of China(50674075)
文摘The localization for mine rescue robot in unknown space of coal mine emer- gency was researched,basing on the requirement of mine rescue robot localization which enters the scene of the coal mine accident,unknown circumstance,the unstructured, non-Gaussian and nonlinear work-space for robot works.The localization using particle filter was proposed to which is applied in mine rescue robot in unknown under-ground space.Meanwhile,focusing on severe particle sample degeneracy in the primary particle filter,an improved particle filter was proposed to reinforce the stability of particle filter.Be- ing compared with localization using extended Kalman filter through simulation experiment the localization using particle filter is proved to have more locating accuracy in unknown underground space and better computational real-time ability,which solves the pre-local- ization problem of robot underground.
文摘A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.
文摘The artificial neural network(ANN)and hybrid of artificial neural network and genetic algorithm(GANN)were appliedto predict the optimized conditions of column leaching of copper oxide ore with relations of input and output data.The leachingexperiments were performed in three columns with the heights of2,4and6m and in particle size of<25.4and<50.8mm.Theeffects of different operating parameters such as column height,particle size,acid flow rate and leaching time were studied tooptimize the conditions to achieve the maximum recovery of copper using column leaching in pilot scale.It was found that therecovery increased with increasing the acid flow rate and leaching time and decreasing particle size and column height.Theefficiency of GANN and ANN algorithms was compared with each other.The results showed that GANN is more efficient than ANNin predicting copper recovery.The proposed model can be used to predict the Cu recovery with a reasonable error.
文摘It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.
文摘This paper presents a new method for the correct selection of mining methods and pre-diction of main technological and economic indexes of the face in the gentle inclined thick seams with the application of the artificial neural network theory and the expert system. The theory anal- ysis and calculating results indicate that the method is reliable, practical and precise. This method has strongly capabilities of self-study and non-linear dynamic data process. It is expected to be widely applied in the policy decision and prediction of mining technology in coal mine.
基金Supported by the Science Foundation of the Liaoning Province(2004C011)
文摘In the goal optimization and control optimization process the problems with common artificial neural network algorithm are unsure convergence, insufficient post-training network precision, and slow training speed, in which partial minimum value question tends to occur. This paper conducted an in-depth study on the causes of the limi-tations of the algorithm, presented a rapid artificial neural network algorithm, which is characterized by integrating multiple algorithms and by using their complementary advan-tages. The salient feature of the method is self-organization, which can effectively prevent the optimized results from tending to be partial minimum values. Overall optimization can be achieved with this method, goal function can be searched for in overall scope. With op-timization control of coal mine ventilator as a practical application, the paper proves that by integrating multiple artificial neural network algorithms, best control optimization and goal optimized can be achieved.