Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro...Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.展开更多
A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential w...A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.展开更多
A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was...A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.展开更多
To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failur...To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu n...The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu nanoparticles on the interface strength and failure behavior of the Ag-SnO_(2) contact materials are investigated by numerical simulations and experiments.Three-dimensional representative volume element(RVE)models for the Ag-SnO_(2) materials without and with Cu nanoparticles are established,and the cohesive zone model is used to simulate the interface debonding process.The results show that the stress−strain relationships and failure modes predicted by the simulation agree well with the experimental ones.The adhesion strengths of the Ag/SnO_(2) and Ag/Cu interfaces are respectively predicted to be 100 and 450 MPa through the inverse method.It is found that the stress concentration around the SnO_(2) phase is the primary reason for the interface debonding,which leads to the failure of Ag-SnO_(2) contact material.The addition of Cu particles not only improves the interface strength,but also effectively suppresses the initiation and propagation of cracks.The results have an reference value for improving the processability of Ag based contact materials.展开更多
The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechani...The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechanism of 7075 aluminum alloy under different angular displacement amplitudes were investigated in detail.The results show that the torsional fretting running behaviors of 7075 aluminum alloy can be defined by three fretting regimes(i.e.partial slip regime(PSR),mixed fretting regime(MFR) and slip regime(SR)) with the increase of angular displacement amplitudes.In PSR,the damage occurs at the lateral portion of the contact zone with a slight annular shape.However,in MFR and SR,more severe damages are observed and the debris layer covers the wear scars.Friction torque and dissipation energy which are strongly dependent upon the imposed angular displacement amplitudes and presented in three stages were discussed in detail.The mechanisms of torsional fretting wear of aluminum alloy are mainly oxidative wear,abrasive wear and delamination in the three fretting regimes.In addition,the oxidative debris plays an important role during the torsional fretting wear processes.展开更多
The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and enginee...The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.展开更多
This study intends to explore and analysis the portrayal of self-damaging behavior, which encapsulates two female characters: Lady Dedlock and Mademoiselle Hortense in one of the most famous novels of Charles Dickens...This study intends to explore and analysis the portrayal of self-damaging behavior, which encapsulates two female characters: Lady Dedlock and Mademoiselle Hortense in one of the most famous novels of Charles Dickens' Bleak House (1984). An evaluation of these two female characters shows and reflects that their self-damaging behavior emerges from low self esteem, which results from a number of reasons. The self-damaging behavior introduced by these women involves: self-imposed isolation, women madness, purposive accidents, physical self-abuse, and most consequently, conscious pursuit of destructive relationships with men. Although Dickens clearly means no maliciousness to women in his works, the great Victorian marital upheaval of June, 1858, is illustrative of Dickens's ambivalent attitude towards women, especially towards strong women展开更多
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shea...This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.展开更多
This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on ex...This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on experimental research results on wall samples made of local materials such as mud bricks, clay and straw mixture, rubble stones and limestones cut in standard sizes. In addition, the constructive measures prepared for the earthquake resistance of rural structures and the application techniques of these buildings in common construction are also generalized in this article.展开更多
It is extremely important to study and understand the deformation behavior and strength characteristics of rocks under thermal-mechanical (TM) coupling effects. Failure behavior and strength characteristics of Pingd...It is extremely important to study and understand the deformation behavior and strength characteristics of rocks under thermal-mechanical (TM) coupling effects. Failure behavior and strength characteristics of Pingdingshan sandstone were investigated at room temperatures up to 300℃ in an internally heated apparatus and tensile load through meso-scale laboratory experiments in this work. 33 experiments have successfully been conducted for Pingdingshan sandstone. Experimental results indicated that the tensile strength increased slowly with temperatures from 25℃ to 100℃, and then sharply jumped from 100℃ to 150℃, and finally decreased slightly with temperatures from 150℃ to 300℃. And about 150℃ is the threshold temperature of strength and thermal cracking. At low temperatures (25℃-150℃), sandstone strength is determined by relatively weak clay cement. However, at higher temperatures (150℃-300℃), because of the strength enhancement of clay cement, sandstone strength is controlled by both mineral particles and clay cement. The effects of cement clay, micro-cracks closing, and thermal cracking were the possible reasons for our detailed analysis. In addition, the typical fracture position maps and nominal stress-strain curves indicated that the temperature had strong effects on the failure mechanism of sandstone. The fractograph implied that the dominant fracture mechanism tended to transform from brittle at low temperatures to ductile at high temperatures.展开更多
The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the mater...The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the material. Dynamic compression experiments are conducted at room temperature using a single-stage light gas gun. The Hugoniot relations between shock wave velocity and particle velocity for the cellular titanium samples with porosities 20% and 30% are obtained. The shock response of the regular cellular titanium shows a clear wave attenuation effect. Numerical simulations are also conducted to supplement the experimental study.Inelastic deformation is observed in the samples using optical micrographs, indicating that the deformation of pores contributes significantly to the shock wave attenuation of the cellular titanium material.展开更多
Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. ...Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.展开更多
基金supported by the National Basic Research Program of China (No.2013CB036003)the Graduate Research and Innovation Program of Jiangsu Province (No.CXLX13_943)
文摘Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.
文摘A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata,the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden strata overhanging the goaf indicated by subsidence monitoring.
基金Project(50808086) supported by the National Natural Science Foundation of China
文摘A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.
基金Sponsored by the National Natural Science Foundation of China(Grant No.90715034)
文摘To study the damage mechanism of single-layer reticulated domes subject to severe earthquakes, three limit states of single-layer reticulated domes under earthquakes are defined firstly in this paper. Then, two failure modes are presented by analyzing damage behaviors, and their characteristics are pointed out respectively. Furthermore, the damage process is analyzed and the causes of structural damage in different levels are studied. Finally, by comparing deformation and vibration status of domes with different failure modes, the principles of different failures are revealed and an integrated frame of damage mechanism is set up.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金Projects(11872257,11572358)supported by the National Natural Science Foundation of ChinaProject(ZD2018075)supported by the Hebei Provincial Education Department,China。
文摘The electrical contact and mechanical performances of Ag-SnO_(2) contact materials are often improved by additives,especially Cu and its oxides.To reveal the improvement mechanism of metal additive,the effects of Cu nanoparticles on the interface strength and failure behavior of the Ag-SnO_(2) contact materials are investigated by numerical simulations and experiments.Three-dimensional representative volume element(RVE)models for the Ag-SnO_(2) materials without and with Cu nanoparticles are established,and the cohesive zone model is used to simulate the interface debonding process.The results show that the stress−strain relationships and failure modes predicted by the simulation agree well with the experimental ones.The adhesion strengths of the Ag/SnO_(2) and Ag/Cu interfaces are respectively predicted to be 100 and 450 MPa through the inverse method.It is found that the stress concentration around the SnO_(2) phase is the primary reason for the interface debonding,which leads to the failure of Ag-SnO_(2) contact material.The addition of Cu particles not only improves the interface strength,but also effectively suppresses the initiation and propagation of cracks.The results have an reference value for improving the processability of Ag based contact materials.
基金Project(2007CB714704) supported by the National Basic Research Program of ChinaProjects(50775192,50821063) supported by the National Natural Science Foundation of China
文摘The torsional fretting wear tests of 7075 aluminum alloy flat against 52100 steel ball in dry condition were carried out on a new high-precision torsional fretting-wear tester.The kinetics behaviors and damage mechanism of 7075 aluminum alloy under different angular displacement amplitudes were investigated in detail.The results show that the torsional fretting running behaviors of 7075 aluminum alloy can be defined by three fretting regimes(i.e.partial slip regime(PSR),mixed fretting regime(MFR) and slip regime(SR)) with the increase of angular displacement amplitudes.In PSR,the damage occurs at the lateral portion of the contact zone with a slight annular shape.However,in MFR and SR,more severe damages are observed and the debris layer covers the wear scars.Friction torque and dissipation energy which are strongly dependent upon the imposed angular displacement amplitudes and presented in three stages were discussed in detail.The mechanisms of torsional fretting wear of aluminum alloy are mainly oxidative wear,abrasive wear and delamination in the three fretting regimes.In addition,the oxidative debris plays an important role during the torsional fretting wear processes.
文摘The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering. A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work. Failure by creep for polymeric material is an important problem to be addressed in the engineering. A universal equation on reduced extensional failure creep compliance for PMMA has been derived. It is successful in relating the reduced extensional failure creep compliance with aging time, temperature, levels of stress, the average growth dimensional number and the parameter in K-W-W function. Based on the universal equation, a method for the prediction of failure behavior, failure strain criterion, failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach". The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments, and the proposed method is reliable and practical. The dependences of reduced extensional failure creep compliance on the conditions of aging time, failure creep stress, the structure of fluidized-domain constituent chains are discussed. The shifting factor, exponent for time-stress superposition at different levels of stress and the shifting factor, exponent for time-time aging superposition at different aging time are theoretically defined respectively.
文摘This study intends to explore and analysis the portrayal of self-damaging behavior, which encapsulates two female characters: Lady Dedlock and Mademoiselle Hortense in one of the most famous novels of Charles Dickens' Bleak House (1984). An evaluation of these two female characters shows and reflects that their self-damaging behavior emerges from low self esteem, which results from a number of reasons. The self-damaging behavior introduced by these women involves: self-imposed isolation, women madness, purposive accidents, physical self-abuse, and most consequently, conscious pursuit of destructive relationships with men. Although Dickens clearly means no maliciousness to women in his works, the great Victorian marital upheaval of June, 1858, is illustrative of Dickens's ambivalent attitude towards women, especially towards strong women
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
基金financial support and providing research facilities used in this work
文摘This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.
文摘This article deals with the results of the research on the behaviors of the rural buildings made up of local materials during earthquakes. This article reveals the mechanical properties of masonry detected based on experimental research results on wall samples made of local materials such as mud bricks, clay and straw mixture, rubble stones and limestones cut in standard sizes. In addition, the constructive measures prepared for the earthquake resistance of rural structures and the application techniques of these buildings in common construction are also generalized in this article.
基金supported by the National Natural Science Foundation of China(Grant No.11102225)the Special Funds for Major State Basic Research Project(Grant Nos. 2010CB732002 and 2011CB201201)+2 种基金the National Excellent Doctoral Dissertation of China(Grant No.201030)the Beijing Nova Program (Grant No.2010B062)the New Century Excellent Talents in University(Grant No.NCET-09-0726)
文摘It is extremely important to study and understand the deformation behavior and strength characteristics of rocks under thermal-mechanical (TM) coupling effects. Failure behavior and strength characteristics of Pingdingshan sandstone were investigated at room temperatures up to 300℃ in an internally heated apparatus and tensile load through meso-scale laboratory experiments in this work. 33 experiments have successfully been conducted for Pingdingshan sandstone. Experimental results indicated that the tensile strength increased slowly with temperatures from 25℃ to 100℃, and then sharply jumped from 100℃ to 150℃, and finally decreased slightly with temperatures from 150℃ to 300℃. And about 150℃ is the threshold temperature of strength and thermal cracking. At low temperatures (25℃-150℃), sandstone strength is determined by relatively weak clay cement. However, at higher temperatures (150℃-300℃), because of the strength enhancement of clay cement, sandstone strength is controlled by both mineral particles and clay cement. The effects of cement clay, micro-cracks closing, and thermal cracking were the possible reasons for our detailed analysis. In addition, the typical fracture position maps and nominal stress-strain curves indicated that the temperature had strong effects on the failure mechanism of sandstone. The fractograph implied that the dominant fracture mechanism tended to transform from brittle at low temperatures to ductile at high temperatures.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572049 and 11472036)
文摘The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the material. Dynamic compression experiments are conducted at room temperature using a single-stage light gas gun. The Hugoniot relations between shock wave velocity and particle velocity for the cellular titanium samples with porosities 20% and 30% are obtained. The shock response of the regular cellular titanium shows a clear wave attenuation effect. Numerical simulations are also conducted to supplement the experimental study.Inelastic deformation is observed in the samples using optical micrographs, indicating that the deformation of pores contributes significantly to the shock wave attenuation of the cellular titanium material.
基金Project (No.SJ08E204) supported by the Natural Science Foundation of Shanxi Province,China
文摘Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.