Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of t...Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.展开更多
The parameter estimation problem in linear model is considered when multicollinearity and outliers exist simultaneously.A class of new estimators,robust general shrunken estimators,are proposed by grafting the robust ...The parameter estimation problem in linear model is considered when multicollinearity and outliers exist simultaneously.A class of new estimators,robust general shrunken estimators,are proposed by grafting the robust estimation techniques philosophy into the biased estimator,and their statistical properties are discussed.By appropriate choices of the shrinking parameter matrix,we obtain many useful and important estimators.A numerical example is used to illustrate that these new estimators can not only effectively overcome difficulty caused by multicollinearity but also resist the influence of outliers.展开更多
Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is m...Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is more robust than all other implication inferences for noise data and that CFS has better robustness than conventional fuzzy systems, which provide the solid foundation for CFS's potential application in fuzzy control and modeling and so on.展开更多
n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm mean...n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm means that the output of the controlled plant can be stabilized in the presence of unmodelled dynamics and bounded unmeasurable output noise. Simulation results show the effeciency of the algorithm.展开更多
A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as mea...A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.展开更多
Stacks of solid oxide cells which can be run as both electrolysers and fuel cells have been tested for robustness towards simulations of stress conditions which are likely to occur during operation of solid oxide elec...Stacks of solid oxide cells which can be run as both electrolysers and fuel cells have been tested for robustness towards simulations of stress conditions which are likely to occur during operation of solid oxide electrolysis systems, for which the energy supply comes from renewable sources, such as wind mills and solar cells. Such conditions are thermo mechanical stress conditions as well as loss of fuel and air supply. The cells have Ni/YSZ (yttria stabilized zirconia) fuel electrodes, YSZ electrolytes, and LSCF (lanthanum strontium cobalt ferrite) oxygen electrodes with a CGO (cerium gadolinium oxide) barrier layer. In the stacks, the cells are separated by chromium rich steel interconnects. The robustness tests of stacks are one step in the development of a SOEC (solid oxide electrolysis cell) core; the core component in a SOEC system, including one or more SOEC stacks, heaters, heat exchangers, insulation, and feed troughs.展开更多
The problem of the global exponential robust stability of interval neural networks with a fixed delay was studied by an approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI). Th...The problem of the global exponential robust stability of interval neural networks with a fixed delay was studied by an approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI). The results obtained provide an easily verified guideline for determining the exponential robust stability of delayed neural networks. The theoretical analysis and numerical simulations show that the results are less conservative and less restrictive than those reported recently in the literature.展开更多
Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual constr...Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo(MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo(MC) method. Additionally, a hierarchical simulation model coupling critical path method(CPM) and a cycle operation network(CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology.展开更多
文摘Device robust-design is inherently a multiple-objective optimization problem.Using design of experiments (DoE) combined with response surface methodology (RSM) can satisfy the great incentive to reduce the number of technology CAD(TCAD) simulations that need to be performed.However,the errors of RSM models might be large enough to diminish the validity of the results for some nonlinear problems.To find the feasible design space,a new method with objectives-oriented design in generations that takes the errors of RSM model into account is presented.After the augment design of experiments in promising space according to the results of RSM model in current generation,the feasible space will be emerging as the model errors deceasing.The results on FIBMOS examples show that the methodology is efficient.
文摘The parameter estimation problem in linear model is considered when multicollinearity and outliers exist simultaneously.A class of new estimators,robust general shrunken estimators,are proposed by grafting the robust estimation techniques philosophy into the biased estimator,and their statistical properties are discussed.By appropriate choices of the shrinking parameter matrix,we obtain many useful and important estimators.A numerical example is used to illustrate that these new estimators can not only effectively overcome difficulty caused by multicollinearity but also resist the influence of outliers.
文摘Syllogistic fuzzy reasoning is introduced into fuzzy system, and the new Cascaded Fuzzy System(CFS) is presented. The thoroughly theoretical analysis and experimental results show that syllogistic fuzzy reasoning is more robust than all other implication inferences for noise data and that CFS has better robustness than conventional fuzzy systems, which provide the solid foundation for CFS's potential application in fuzzy control and modeling and so on.
文摘n this paper an adaptive robust algorithm for pole-placement design is proposed. It consists of the refined--optimal IV parameter estimator and a robust pole--placement controller. The robustness of the algorithm means that the output of the controlled plant can be stabilized in the presence of unmodelled dynamics and bounded unmeasurable output noise. Simulation results show the effeciency of the algorithm.
基金Project(71001079)supported by the National Natural Science Foundation of China
文摘A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.
文摘Stacks of solid oxide cells which can be run as both electrolysers and fuel cells have been tested for robustness towards simulations of stress conditions which are likely to occur during operation of solid oxide electrolysis systems, for which the energy supply comes from renewable sources, such as wind mills and solar cells. Such conditions are thermo mechanical stress conditions as well as loss of fuel and air supply. The cells have Ni/YSZ (yttria stabilized zirconia) fuel electrodes, YSZ electrolytes, and LSCF (lanthanum strontium cobalt ferrite) oxygen electrodes with a CGO (cerium gadolinium oxide) barrier layer. In the stacks, the cells are separated by chromium rich steel interconnects. The robustness tests of stacks are one step in the development of a SOEC (solid oxide electrolysis cell) core; the core component in a SOEC system, including one or more SOEC stacks, heaters, heat exchangers, insulation, and feed troughs.
文摘The problem of the global exponential robust stability of interval neural networks with a fixed delay was studied by an approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI). The results obtained provide an easily verified guideline for determining the exponential robust stability of delayed neural networks. The theoretical analysis and numerical simulations show that the results are less conservative and less restrictive than those reported recently in the literature.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the National Natural Science Foundation of China(Grant Nos.9121530151439005)
文摘Scheduling is a major concern in construction planning and management, and current construction simulation research typically targets the shortest total duration. However, uncertainties are inevitable in actual construction, which may lead to discrepancies between the actual and planned schedules and increase the risk of total duration delay. Therefore, developing a robust construction scheduling technique is of vital importance for mitigating disturbance and improving completion probability. In the present study, the authors propose a robustness analysis method that involves underground powerhouse construction simulation based on the Markov Chain Monte Carlo(MCMC) method. Specifically, the MCMC method samples construction disturbances by considering the interrelationship between the states of parameters through a Markov state transition probability matrix, which is more robust and efficient than traditional sampling methods such as the Monte Carlo(MC) method. Additionally, a hierarchical simulation model coupling critical path method(CPM) and a cycle operation network(CYCLONE) is built, using which construction duration and robustness criteria can be calculated. Furthermore, a detailed measurement method is presented to quantize the robustness of underground powerhouse construction, and the setting model of the time buffer is proposed based on the MCMC method. The application of this methodology not only considers duration but also robustness, providing scientific guidance for engineering decision making. We analyzed a case study project to demonstrate the effectiveness and superiority of the proposed methodology.