Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and ...Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.展开更多
To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average...To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.展开更多
Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigate...Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigated theoretically. The calculation results show that increasing regenerator flow resistance can lead to a smaller extent of DC flow.Therefore,a better stability performance of the cooler can be realized.On this basis,the stability characteristics of the cooler with various regenerator matrix arrangements are studied by experiments.By replacing 30% space of 247 screens of stainless steel mesh at the cold part of the regenerator by lead balls of 0.25 mm diameter,a long-time stable temperature output at 80 K region is achieved. This achievement provides a new way to obtain stable performance for pulse tube coolers at high temperature and is helpful for its application.展开更多
Hot compression tests were conducted on a Gleeble-1500D thermal simulating tester.Based on the deformation behavior and microstructural evolution of superalloy GH79,different types of instability criteria of PRASAD,GE...Hot compression tests were conducted on a Gleeble-1500D thermal simulating tester.Based on the deformation behavior and microstructural evolution of superalloy GH79,different types of instability criteria of PRASAD,GEGEL,MALAS,MURTY and SEMIATIN were compared,and the physical significance of parameters was analyzed.Meanwhile,the processing maps with different instability criteria were obtained.It is shown that instability did not occur when average power dissipation rate was larger than 60%in the temperature range of 900-930°C and 960-1080°C,corresponding to the strain rate range of 5×10 -4 -1.8×10 -1 s -1 and 5×10 -4 -1.5×10 -1 s -1 ,respectively.The two domains are appropriate for the processing deformation of superalloy GH79.展开更多
The measurement and observation for this study were carried out by using a three-dimensional (u, v, w) Sonic anemometer (IAP-SA 485), at Forest Ecosystem Opened Research Station of Changbai Mountains (12828扙 and 4224...The measurement and observation for this study were carried out by using a three-dimensional (u, v, w) Sonic anemometer (IAP-SA 485), at Forest Ecosystem Opened Research Station of Changbai Mountains (12828扙 and 4224?N, Jilin Province, P. R. China) in August 2001. The basic characteristics of turbulence, such as turbulence intensity, atmospheric stability, time scales, and convection state, near the forest floor were analyzed. It is concluded that the airflow near forest floor is characterized by high intermittence and asymmetry, and the active and upward movement takes the leading position. Near forest floor, the vertical turbulence is retained and its time scale and length scale are much less than that of u, v components. The eddy near forest floor shows a flat structure and look like a ’Disk’. Buoyancy plays a leading role in the generation and maintenance of local turbulence展开更多
The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a nov...The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.展开更多
In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDB...In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium bromide (CTAB) is prepared. A series of experiments is performed to investigate the stability of the prepared nanofluid with different contents and proportions of surfactants, different durations of ultrasonic wave vibration and different durations of illumination. The optimal dispersion conditions are 1.5% SDBS, 0. 015% CTAB(mass fraction), 30 min of ultrasonic vibration and over 72 h of illumination. Finally, based on double electrode layer theory, the influences of the content of the surfactants on the stability of nanofluid are analyzed. The existence of the optimal surfactant content is proved, which is in accordance with the experimental results.展开更多
The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS incr...The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS increased substantially when pH was close to the pKa of LH. The profile of JSS versus pH showed an 慡?shaped curve. JSS of Lidocaine free base (LFB) was fourteen times that of LH. The pH of vehicle influences the permeation of LH significantly and should be considered as an important factor when a formulation is developed.展开更多
The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency ...The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.展开更多
The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish th...The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish the complete unsteadily aeroelastic coupling analytical model of the tiltrotor. The stability of the tiltrotor in the helicopter mode is analyzed aiming at a semi span soft-inplane tihrotor model with an elastic wing. Parametric effects of the lag stiffness of blades and the flight speed are analyzed. Numerical simulations demonstrate that the multibody analytical model can analyze the aeroelastic stability of the tiltrotor aircraft in the helicopter mode.展开更多
In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flo...In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian me...A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.展开更多
A novel forward-flyback converter employing two switches and two transformers is presented. Two diodes of the primary side enable the voltage stress of two switches to be clamped at the input voltage ,which is lower t...A novel forward-flyback converter employing two switches and two transformers is presented. Two diodes of the primary side enable the voltage stress of two switches to be clamped at the input voltage ,which is lower than that of a conventional forward-flyback converter. Two transformers offer the following advantages. Firstly, the turns of primary transformer winding are reduced to half of that of a conventional forward-flyback converter with a single transformer; Secondly, the use of two transformers enables the smaller low-profile cores to be utilized, thus facilitating a low-profile design. The unequal condition of turn ratios is compared with the equal condition of turn ratios. When two turn ratios are unequal, the power distribution between the two transformers can be easily designed. Finally, experimental results verify the above analyses.展开更多
The hydrodynamic performance of a propeller in unsteady inflow was calculated using the surface panel method. The surfaces of blades and hub were discreted by a number of hyperboloidal quadrilateral panels with consta...The hydrodynamic performance of a propeller in unsteady inflow was calculated using the surface panel method. The surfaces of blades and hub were discreted by a number of hyperboloidal quadrilateral panels with constant source and doublet distribution. Each panel's comer coordinates were calculated by spline interpolation between the main parameter and the blade geometry of the propeller. The integral equation was derived using the Green Formula. The influence coefficient of the matrix was calculated by the Morino analytic formula. The tangential velocity distribution was calculated with the Yanagizawa method, and the pressure coefficient was calculated using the Bonuli equation. The pressure Kutta condition was satisfied at the trailing edge of the propeller blade using the Newton-Raphson iterative procedure, so as to make the pressure coefficients of the suction and pressure faces of the blade equal at the trailing edge. Calculated results for the propeller in steady inflow were taken as initialization values for the unsteady inflow calculation process. Calculations were carried out from the moment the propeller achieved steady rotation. At each time interval, a linear algebraic equation combined with Kutta condition was established on a key blade and solved numerically. Comparison between calculated results and experimental results indicates that this method is correct and effective.展开更多
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupli...The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.展开更多
Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the p...Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and first-overpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point, and the former approaches the results at the scission point.展开更多
In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The ...In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.展开更多
文摘Aim To study singular points, closed orbits, stable manifolds and unstable manifolds of a second order autonomous Birkhoff system. Methods Qualitative methods of ordinary differential equation were used. Results and Conclusion The criteria for singular points, closed orbits and hyperbolic equilibrium points of a second order autonomous Birkhoff system are given. Moreover the stability of equilibria, stable manifolds and unstable manifolds are obtained.
基金The National Natural Science Foundation of China(No50576013)
文摘To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.
基金The National Natural Science Foundation of China(No.50406009).
文摘Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigated theoretically. The calculation results show that increasing regenerator flow resistance can lead to a smaller extent of DC flow.Therefore,a better stability performance of the cooler can be realized.On this basis,the stability characteristics of the cooler with various regenerator matrix arrangements are studied by experiments.By replacing 30% space of 247 screens of stainless steel mesh at the cold part of the regenerator by lead balls of 0.25 mm diameter,a long-time stable temperature output at 80 K region is achieved. This achievement provides a new way to obtain stable performance for pulse tube coolers at high temperature and is helpful for its application.
基金Project(2010CB631203)supported by the National Basic Research Program of China
文摘Hot compression tests were conducted on a Gleeble-1500D thermal simulating tester.Based on the deformation behavior and microstructural evolution of superalloy GH79,different types of instability criteria of PRASAD,GEGEL,MALAS,MURTY and SEMIATIN were compared,and the physical significance of parameters was analyzed.Meanwhile,the processing maps with different instability criteria were obtained.It is shown that instability did not occur when average power dissipation rate was larger than 60%in the temperature range of 900-930°C and 960-1080°C,corresponding to the strain rate range of 5×10 -4 -1.8×10 -1 s -1 and 5×10 -4 -1.5×10 -1 s -1 ,respectively.The two domains are appropriate for the processing deformation of superalloy GH79.
基金This study was supported by the grand of the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX1-SW-01) and National Natural Science Foundation (30070158).
文摘The measurement and observation for this study were carried out by using a three-dimensional (u, v, w) Sonic anemometer (IAP-SA 485), at Forest Ecosystem Opened Research Station of Changbai Mountains (12828扙 and 4224?N, Jilin Province, P. R. China) in August 2001. The basic characteristics of turbulence, such as turbulence intensity, atmospheric stability, time scales, and convection state, near the forest floor were analyzed. It is concluded that the airflow near forest floor is characterized by high intermittence and asymmetry, and the active and upward movement takes the leading position. Near forest floor, the vertical turbulence is retained and its time scale and length scale are much less than that of u, v components. The eddy near forest floor shows a flat structure and look like a ’Disk’. Buoyancy plays a leading role in the generation and maintenance of local turbulence
基金National Natural Science Foundation of China(No.61379125)
文摘The threat of malware in wireless sensor network has stimulated some activities to model and analyze the malware prevalence.To understand the dynamics of malware propagation in wireless sensor network,we propose a novel epidemic model named as e-SEIR(susceptible-exposed-infectious-recovered)model,which is a set of delayed differential equations,in this paper.The model has taken into account the following two factors:1 Multi-state antivirus measures;2 Temporary immune period.Then,the stability and Hopf bifurcation at the equilibria of linearized model are carefully analyzed by considering the distribution of eigenvalues of characteristic equations.Both mathematical analysis and numerical simulations show that the dynamical features of the proposed model rely on the basic reproduction number R0 and time delayτ.This novel model can help us to better understand and predict the propagation behaviors of malware in wireless sensor networks.
基金The National Natural Science Foundation of China(No.50876020)
文摘In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium bromide (CTAB) is prepared. A series of experiments is performed to investigate the stability of the prepared nanofluid with different contents and proportions of surfactants, different durations of ultrasonic wave vibration and different durations of illumination. The optimal dispersion conditions are 1.5% SDBS, 0. 015% CTAB(mass fraction), 30 min of ultrasonic vibration and over 72 h of illumination. Finally, based on double electrode layer theory, the influences of the content of the surfactants on the stability of nanofluid are analyzed. The existence of the optimal surfactant content is proved, which is in accordance with the experimental results.
文摘The effect of pH on the permeation of Lidocaine hydrochloride (LH) across excised rat skin was studied, the steady state flux (JSS) at different pH being determined using improved Valia-Chien diffusion cells. JSS increased substantially when pH was close to the pKa of LH. The profile of JSS versus pH showed an 慡?shaped curve. JSS of Lidocaine free base (LFB) was fourteen times that of LH. The pH of vehicle influences the permeation of LH significantly and should be considered as an important factor when a formulation is developed.
文摘The experiments of primary and secondary instabilities with controlled excitation are carried out on a swept flat plate to study the process leading to the final breakdown of laminar flow. Two types of high frequency secondary instabilities are identified. The most amplified mode is centered about the inflection point of the crosswise profile of the boundary layer and is interpreted as inflectional instability, the other occurs in the one third of the boundary layer from the wall. The high frequency disturbances are highly amplified but they also saturate similarly to the primary and nonlinearly generated disturbances. Their main effect in the final breakdown seems interact with the disturbances is developed and thus widens the frequency spectrum to turbulent state.
文摘The muhi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Muhi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish the complete unsteadily aeroelastic coupling analytical model of the tiltrotor. The stability of the tiltrotor in the helicopter mode is analyzed aiming at a semi span soft-inplane tihrotor model with an elastic wing. Parametric effects of the lag stiffness of blades and the flight speed are analyzed. Numerical simulations demonstrate that the multibody analytical model can analyze the aeroelastic stability of the tiltrotor aircraft in the helicopter mode.
基金Supported by Natural Science Foundation of China (50474062) and State Administration of Coal Mine Safety of China (04-233)
文摘In order to discover the airflow pattern in mine shaft which outfitted with hoist equipment (HE), this paper set up the physical model and anatomized the piston-wind caused by hoist equipment, and researched the flow field and velocity field around the hoist equipment during its moving process, and analyzed the airflow around single and couple hoist equipment as well as decisive range of piston effect and additional effect of hoist equipment to ventilation system. Research conclusion indicate that during hoist equipment movement, airflow pattern changes repeatedly because of the influence of pis-ton effect from hoist equipment, and the study of airflow stability in shaft is the foundation for the stability of ventilation in mine.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 502047 and No. M503094)National Basic Research Program of China (No. 2003CB214500).
文摘A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.
文摘A novel forward-flyback converter employing two switches and two transformers is presented. Two diodes of the primary side enable the voltage stress of two switches to be clamped at the input voltage ,which is lower than that of a conventional forward-flyback converter. Two transformers offer the following advantages. Firstly, the turns of primary transformer winding are reduced to half of that of a conventional forward-flyback converter with a single transformer; Secondly, the use of two transformers enables the smaller low-profile cores to be utilized, thus facilitating a low-profile design. The unequal condition of turn ratios is compared with the equal condition of turn ratios. When two turn ratios are unequal, the power distribution between the two transformers can be easily designed. Finally, experimental results verify the above analyses.
基金Supported by the Doctoral Program of Higher Education Foundation under Grant No. 2006021702.
文摘The hydrodynamic performance of a propeller in unsteady inflow was calculated using the surface panel method. The surfaces of blades and hub were discreted by a number of hyperboloidal quadrilateral panels with constant source and doublet distribution. Each panel's comer coordinates were calculated by spline interpolation between the main parameter and the blade geometry of the propeller. The integral equation was derived using the Green Formula. The influence coefficient of the matrix was calculated by the Morino analytic formula. The tangential velocity distribution was calculated with the Yanagizawa method, and the pressure coefficient was calculated using the Bonuli equation. The pressure Kutta condition was satisfied at the trailing edge of the propeller blade using the Newton-Raphson iterative procedure, so as to make the pressure coefficients of the suction and pressure faces of the blade equal at the trailing edge. Calculated results for the propeller in steady inflow were taken as initialization values for the unsteady inflow calculation process. Calculations were carried out from the moment the propeller achieved steady rotation. At each time interval, a linear algebraic equation combined with Kutta condition was established on a key blade and solved numerically. Comparison between calculated results and experimental results indicates that this method is correct and effective.
文摘The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10075007 and 10235020
文摘Langevin simulation of the particles multi-passing over the saddle point is proposed to calculate thermal fission rate. Due to finite friction and the corresponding thermal fluctuation, a backstreaming exists in the process of the particle descent from the saddle to the scission. This leads to that the diffusion behind the saddle point has influence upon the stationary flow across the saddle point. A dynamical correction factor, as a ratio of the flows of multi- and first-overpassing the saddle point, is evaluated analytically. The results show that the fission rate calculated by the particles multi-passing over the saddle point is lower than the one calculated by the particle firstly passing over the saddle point, and the former approaches the results at the scission point.
基金supported by the National Natural Science Foundation of China (Nos. 51134022 and 51174203)the Key Project of Chinese National Programs for Fundamental Research and Development (No. 2012CB214904)+2 种基金the National Natural Science Foundation of China for Innovative Research Group (No. 50921002)the Natural Science Foundation of Jiangsu Province (No. BK2010002)the Fundamental Research Funds for the Central Universities (Nos. 2010QNB11 and 2010ZDP01A06)
文摘In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.