期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
孔道电位封闭及“空穴”传递理论初探 被引量:4
1
作者 张国俊 孟洪 +1 位作者 王三反 刘忠洲 《环境化学》 CAS CSCD 北大核心 2002年第5期417-422,共6页
通过对离子交换膜表面 ζ电位和间歇通电时 ,电渗析隔室中离子变化的测定 ,建立了离子交换膜选择透过性的新理论 ,即孔道电位封闭及“空穴”传递理论 .
关键词 孔道电位封闭 传递理论 离子交换膜 Ζ电位 “空穴”迁移 电渗析
下载PDF
Impact of 〈100〉Channel Direction for High Mobility p-MOSFETs on Biaxial Strained Silicon
2
作者 顾玮莹 梁仁荣 +1 位作者 张侃 许军 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第10期1893-1897,共5页
Biaxial strain technology is a promising way to improve the mobility of both electrons and holes, while (100) channel direction appears as to be an effective booster of hole mobility in particular. In this work, the... Biaxial strain technology is a promising way to improve the mobility of both electrons and holes, while (100) channel direction appears as to be an effective booster of hole mobility in particular. In this work, the impact of biaxial strain together with (100) channel orientation on hole mobility is explored. The biaxial strain was incorporated by the growth of a relaxed SiGe buffer layer,serving as the template for depositing a Si layer in a state of biaxial tensile strain. The channel orientation was implemented with a 45^o rotated design in the device layout,which changed the channel direction from (110) to (100) on Si (001) surface. The maximum hole mobility is enhanced by 30% due to the change of channel direction from (110) to (100) on the same strained Si (s-Si) p-MOSFETs,in addition to the mobility enhancement of 130% when comparing s-Si pMOS to bulk Si pMOS both along (110) channels. Discussion and analysis are presented about the origin of the mobility enhancement by channel orientation along with biaxial strain in this work. 展开更多
关键词 P-MOSFET strained Si channel direction hole mobility enhancement
原文传递
Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials 被引量:12
3
作者 Zhi-Guo Zhang Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第2期192-209,共18页
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively ... In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%. 展开更多
关键词 polymer solar cells conjugated polymers side-chain engineering photovoltaic materials 2D-conjugated polymers
原文传递
Strain-tunable electronic and transport properties of MoS2 nanotubes 被引量:9
4
作者 Weifeng Li Gang Zhang +1 位作者 Meng Guo Yong-Wei Zhang 《Nano Research》 SCIE EI CAS CSCD 2014年第4期518-527,共10页
Using density functional theory calculations, we have investigated the mechanical properties and strain effects on the electronic structure and transport properties of molybdenum disulfide (MoS2) nanotubes. At a sim... Using density functional theory calculations, we have investigated the mechanical properties and strain effects on the electronic structure and transport properties of molybdenum disulfide (MoS2) nanotubes. At a similar diameter, an armchair nanotube has a higher Young's modulus and Poisson ratio than its zigzag counterpart due to the different orientations of Mo-S bond topologies. An increase in axial tensile strain leads to a progressive decrease in the band gap for both armchair and zigzag nanotubes. For armchair nanotube, however, there is a semiconductor-to-metal transition at the tensile strain of about 8%. For both armchair and zigzag nanotubes, the effective mass of a hole is uniformly larger than its electron counterpart, and is more sensitive to strain. Based on deformation potential theory, we have calculated the carrier mobilities of MoS2 nanotubes. It is found that the hole mobility is higher than its electron counterpart for armchair (6, 6) nanotube while the electron mobility is higher than its hole counterpart for zigzag (10, 0) nanotube. Our results highlight the tunable electronic properties of MoS2 nanotubes, promising for interesting applications in nanodevices, such as opto-electronics, photoluminescence, electronic switch and nanoscale strain sensor. 展开更多
关键词 MoS2 nanotube strain engineering semiconductor-to-metaltransition carrier mobility density functional theory
原文传递
Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals 被引量:3
5
作者 Shuang Liu Jia-Ke Wu +4 位作者 Cong-Cheng Fan Guo-Biao Xue Hong-Zheng Chen Huolin L. Xin Han-Ying Li 《Science Bulletin》 SCIE EI CAS CSCD 2015年第12期1122-1127,I0003,共7页
A simple solution processing method was de- veloped to grow large-scale well-aligned single crystals in- cluding 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS- pentacene), anthracene, tetracene, perylene, C6o ... A simple solution processing method was de- veloped to grow large-scale well-aligned single crystals in- cluding 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS- pentacene), anthracene, tetracene, perylene, C6o and tetra- cyanoquinodimethane. As pinned by a solid needle, a droplet of semiconductor solution dried into single-crystal arrays on a 1 cm×2 cm substrate. TIPS-pentacene was used to demonstrate the fabrication of hundreds of field- effect transistors (FETs) with the hole mobility as high as 6.46 cm^2 V^-1.s^-1. As such, this work provides a high- throughput, yet efficient approach for statistical examination on the FET performance of organic single crystals. 展开更多
关键词 Organic single-crystal transistors Large scale High mobility Solution process
原文传递
Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity 被引量:3
6
作者 Shuangyi Zhao Yue Wang +8 位作者 Wen Huang Hao Jin Peiwen Huang Hu Wang Kun Wang Dongsheng Li Mingsheng Xu Deren Yang Xiaodong Pi 《Science China Materials》 SCIE EI CSCD 2019年第10期1470-1478,共9页
The quantum-dot light-emitting diodes(QLEDs)that emit near-infrared(NIR)light may be important optoelectronic synaptic devices for the realization of artificial neural networks with complete optoelectronic integration... The quantum-dot light-emitting diodes(QLEDs)that emit near-infrared(NIR)light may be important optoelectronic synaptic devices for the realization of artificial neural networks with complete optoelectronic integration.To improve the performance of NIR QLEDs,we take advantage of their low-energy light emission to explore the use of poly(3-hexylthiophene)(P3 HT)as the hole transport layer(HTL).P3 HT has one of the highest hole mobilities among organic semiconductors and essentially does not absorb NIR light.The usage of P3 HT as the HTL indeed significantly mitigates the imbalance of carrier injection in NIR QLEDs.With the additional incorporation of an interlayer of poly[9,9-bis(3’-(N,N-dimethylamino)propyl)-2,7-flourene]-alt-2,7-(9,9-dioctylfluorene)],P3 HT obviously improves the performance of NIR QLEDs.As electroluminescent synaptic devices,these NIR QLEDs exhibit important synaptic functionalities such as short-and long-term plasticity,and may be employed for image recognition. 展开更多
关键词 quantum-dot light-emitting diodes NEAR-INFRARED synaptic devices poly(3-hexylthiophene)
原文传递
Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7% 被引量:2
7
作者 Qicong Li Yang Sun +5 位作者 Cheng Yang Kong Liu MdRasidul Islam Long Li Zhijie Wang Shengchun Qu 《Science Bulletin》 SCIE EI CAS CSCD 2020年第9期747-752,M0004,共7页
For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivi... For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs. 展开更多
关键词 Organic solar cell PEDOT:PSS Water rinse High efficiency
原文传递
Mn-doped SiGe thin films grown by UHV/CVD with room-temperature ferromagnetism and high hole mobility 被引量:2
8
作者 Limeng Shen Xi Zhang +3 位作者 Jiaqi Wang Jianyuan Wang Cheng Li Gang Xiang 《Science China Materials》 SCIE EI CAS CSCD 2022年第10期2826-2832,共7页
In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal anne... In this work,silicon-germanium(SiGe)thin films are epitaxially grown on Ge substrates by ultra-high vacuum chemical vapor deposition and then doped with Mn element by ion-implantation and subsequent rapid thermal annealing(RTA).The characterizations show that the epitaxial SiGe thin films are single-crystalline with uniform tensile strain and then become polycrystalline after the ion implantation and following RTA.The magnetization measurements indicate that the annealed thin films exhibit Mn concentration-dependent ferromagnetism up to 309 K and the X-ray magnetic circular dichroism characterizations reveal the spin and orbital magnetic moments from the substitutional Mn element.To minimize the influence of anomalous Hall effect,magneto-transport measurements at a high magnetic field up to 31 T at 300 K are performed to obtain the hole mobility,which reaches a record-high value of~1230 cm^(2)V^(-1)s^(-1),owing to the crystalline quality and tensile strain-induced energy band modulation of the samples.The first demonstration of Mn-doped SiGe thin films with roomtemperature ferromagnetism and high carrier mobility may pave the way for practical semiconductor spintronic applications. 展开更多
关键词 diluted magnetic semiconductor Mn-doped SiGe FERROMAGNETISM hole mobility UHV/CVD
原文传递
Electrical transport and photoresponse properties of single-crystalline p-type Cd_3As_2 nanowires 被引量:2
9
作者 DUAN TingYuan LOU Zheng SHEN GuoZhen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第2期95-100,共6页
Cd3As2 is an important II-V group semiconductor with excellent electrical and optoelectronic properties. In this work, we report the large scale growth of single-crystalline Cd3As2 nanowires via a simple chemical vapo... Cd3As2 is an important II-V group semiconductor with excellent electrical and optoelectronic properties. In this work, we report the large scale growth of single-crystalline Cd3As2 nanowires via a simple chemical vapor deposition method. Single nanowire field-effect transistors were fabricated with the as-grown Cd3As2 nanowires, which exhibited a high lon/loff of 104 with a hole mobility of 6.02 cm2V-1s-1. Photoresponse properties of the Cd3As2 nanowires were also investigated by illuminating the nanowires with white light by varying intensities. Besides, flexible photodetectors were also fabricated on flexible PET substrate, showing excellent mechanical stablility and flexible electro-optical properties under various bending states and bending cycles. Our results indicate that Cd3As2 nanowires can be the basic material of next generation electronic and ootoelectronic devices. 展开更多
关键词 NANOWIRES electrical transport PHOTODETECTOR
原文传递
Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility 被引量:2
10
作者 Zhe Zheng Zhenjie Ni +4 位作者 Xiaotao Zhang Yonggang Zhen Huanli Dong Jin Zhang Wenping Hu 《Science China Materials》 SCIE EI CSCD 2019年第6期813-822,共10页
Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in ... Conjugated polymers attracted much attention in the past few decades due to their wide applications in various optoelectronic devices and circuits. The charge transport process in conjugated polymers mainly occurs in the intrachain and interchain parts, where the interchain charge transport is generally slower than intrachain transport and may slow down the whole charge transport properties. Aiming at this issue, herein we employ semiconducting single-walled carbon nanotubes(s-SWNTs) as efficient charge-transporting jointing channels between conjugated polymer chains for improving the charge transport performance. Taking the typical conjugated polymer, ploy-N-alkyl-diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene(PDPP-TT) as an example, polymer thin film transistors(PTFTs) based on the optimized blended films of PDPP-TT/s-SWNTs exhibit an obviously increasing device performance compared with the devices based on pure PDPP-TT films, with the hole and electron mobility increased from 2.32 to 12.32 cm^2 V^-1 s^-1 and from 2.02 to 5.77 cm^2 V^-1 s^-1, respectively. This result suggests the importance of forming continuous conducting channels in conjugated polymer thin films, which can also be extended to other polymeric electronic and optoelectronic devices to promote their potential applications in large-area, low-cost and high performance polymeric electronic devices and circuits. 展开更多
关键词 conjugated polymer s-SWNTs connected conducting channel carrier mobility
原文传递
Hole mobility enhancement in uniaxial stressed Ge dependence on stress and transport direction 被引量:1
11
作者 MA JianLi FU ZhiFen +1 位作者 LIU Peng ZHANG HeMing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第10期1860-1865,共6页
Utilizing a six-band k.p valence band calculations that considered a strained perturbation Hamiltonian, uniaxial stress-induced valence band structure parameters for Ge such as band edge energy shift, split, and effec... Utilizing a six-band k.p valence band calculations that considered a strained perturbation Hamiltonian, uniaxial stress-induced valence band structure parameters for Ge such as band edge energy shift, split, and effective mass were quantitatively evaluated. Based on these valence band parameters, the dependence of hole mobility on uniaxial stress(direction, type, and magnitude) and hole transport direction was theoretical studied. The results show that the hole mobility had a strong dependence on the transport direction and uniaxial stress. The hole mobility enhancement can be found for all transport directions and uniaxial stess configurations, and the hole transport along the [110] direction under the uniaxial [110] compressive stress had the highest mobility compared to other transport directions and stress configurations. 展开更多
关键词 Ge uniaxial stress valence band structure hole mobility
原文传递
Continuous and highly ordered organic semiconductor thin films via dip-coating:the critical role of meniscus angle 被引量:1
12
作者 Xuanyu Liu Yu Zhang +2 位作者 Xiaotao Zhang Rongjin Li Wenping Hu 《Science China Materials》 SCIE EI CSCD 2020年第7期1257-1264,共8页
Dip-coating is a low-cost,high-throughput technique for the deposition of organic semiconductors over large area on various substrates.Tremendous studies have been done and many parameters such as withdrawal speed,sol... Dip-coating is a low-cost,high-throughput technique for the deposition of organic semiconductors over large area on various substrates.Tremendous studies have been done and many parameters such as withdrawal speed,solvent type and solution concentration have been investigated.However,most of the depositions were ribbons or dendritic crystals with low coverage of the substrate due to the ignorance of the critical role of dynamic solution-substrate interactions during dip-coating.In this study,meniscus angle(MA)was proposed to quantify the real-time in-situ solutionsubstrate interactions during dip-coating.By proper surface treatment of the substrate,the value of MA can be tuned and centimeter-sized,continuous and highly ordered organic semiconductor thin films were achieved.The charge transport properties of the continuous thin films were investigated by the construction of organic field-effect transistors.Maximum(average)hole mobility up to 11.9(5.1)cm2V-1s-1was obtained.The average mobility was 82%higher than that of ribbon crystals,indicating the high crystallinity of the thin films.Our work reveals the critical role of dynamic solutionsubstrate interactions during dip-coating.The ability to produce large-area,continuous and highly ordered organic semiconductor thin films by dip-coating could revival the old technique for the application in various optoelectronics. 展开更多
关键词 organic field-effect transistor DIP-COATING meniscus angle charge transport MOBILITY
原文传递
A novel dopant for spiro-OMeTAD towards efficient and stable perovskite solar cells 被引量:1
13
作者 Zhipeng Lin Jing Li +8 位作者 Hengyi Li Yanping Mo Junye Pan Chao Wang Xiao-Li Zhang Tongle Bu Jie Zhong Yi-Bing Cheng Fuzhi Huang 《Science China Materials》 SCIE EI CAS CSCD 2021年第12期2915-2925,共11页
2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD), as the most commonly used hole transport material(HTM), plays a significant role in the normal structured(n-i-p) high-efficiency ... 2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene(spiro-OMeTAD), as the most commonly used hole transport material(HTM), plays a significant role in the normal structured(n-i-p) high-efficiency perovskite solar cells(PSCs). In general, it is prepared by a halogen solvent(chlorobenzene, CBZ) and needs an ion dopant(lithium bis(trifluoromethanesulfonyl)imide, Li-TFSI) to improve its conductivity and hole mobility. However, such a halogen solvent is not environmentally friendly and the widely used LiTFSI dopant would affect the stability of PSCs. Herein, we develop a non-halogen solvent-tetrahydrofuran(THF)-prepared spiro-OMeTAD solution with a new p-type dopant,potassium bis(fluorosulfonyl)imide(K-FSI), to apply into PSCs. By this strategy, high-hole-mobility spiro-OMeTAD film is achieved. Meanwhile, the potassium ions introduced by diffusion into perovskite surface passivate the interfacial defects. Therefore, a hysteresis-free champion PSC with an efficiency of 21.02% is obtained, along with significantly improved stability against illumination and ambient conditions. This work provides a new strategy for HTMs toward hysteresis-free high-efficiency and stable PSCs by substituting dopants. 展开更多
关键词 perovskite solar cells spiro-OMeTAD K-FSI hysteresis-free
原文传递
Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors 被引量:1
14
作者 Lu Wang Cong Wang +3 位作者 Xixia Yu Lei Zheng Xiaotao Zhang Wenping Hu 《Science China Materials》 SCIE EI CSCD 2020年第1期122-127,共6页
Two-dimensional single-crystalline p-n junctions of organic semiconductors(pn-2 DCOSs) show great potential in organic logic circuits due to their single crystal nature and excellent ambipolar charge transport. Howeve... Two-dimensional single-crystalline p-n junctions of organic semiconductors(pn-2 DCOSs) show great potential in organic logic circuits due to their single crystal nature and excellent ambipolar charge transport. However,there are only few reports on pn-2 DCOSs because it is difficult to obtain such highly ordered structure in p-n junction.Herein, a novel and effective solution processing method of secondary transfer technology based on the facile drop casting is used to fabricate devices of pn-2 DCOSs based on C8-BTBT(p-type) and TFT-CN(n-type) successfully. The high-performance ambipolar field transistors based on such ultrathin pn-2 DCOSs with several molecular layers thickness show wellbalanced ambipolar charge transport behaviors with hole mobility as high as 0.43 cm^2 V^-1 s^-1 and electron mobility up to 0.11 cm^2 V^-1 s(^-1), respectively. This work is essential for studying the intrinsic properties of organic p-n junctions and achieving high performance in organic complementary circuits. 展开更多
关键词 two-dimensional materials ambipolar field transistors p-n junctions single crystals
原文传递
Graphdiyne oxide-accelerated charge carrier transfer and separation at the interface for efficient binary organic solar cells 被引量:1
15
作者 Le Liu Yuanyuan Kan +9 位作者 Guangliu Ran Min Zhao Zhiyu Jia Siqi Chen Jianxiao Wang Hao Chen Chengjie Zhao Ke Gao Wenkai Zhang Tonggang Jiu 《Science China Materials》 SCIE EI CAS CSCD 2022年第10期2647-2656,共10页
Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible gra... Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices. 展开更多
关键词 graphdiyne oxide hole transport layer charge carrier dynamics PEDOT:PSS organic solar cells
原文传递
Hole mobility of strained Si/(001)Si_(1-x)Ge_x
16
作者 WANG XiaoYan ZHANG HeMing +2 位作者 MA JianLi WANG GuanYu QU JiangTao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第1期48-54,共7页
The hole mobility of strained silicon along the <110> orientation on (001) Si1?xGex is obtained by solving collision term in the Boltzmann transport equation. The analytical model is proposed that considers the ... The hole mobility of strained silicon along the <110> orientation on (001) Si1?xGex is obtained by solving collision term in the Boltzmann transport equation. The analytical model is proposed that considers the effect of strain-induced splitting at valence band valleys in silicon, doping dependence and three scattering mechanisms, i.e., ionized impurity scattering, acoustic phonon scattering and non-polar optical phonon scattering. The hole occupancy at top band indicates a non-monotonic variation under biaxial tensile strain at low temperature (77 K). What's more, a non-monotonic variation of hole mobility at room temperature (300 K) is presented. Compared with the room temperature hole mobility, the low temperature hole mobility is affected greatly by ionized impurity scattering at lower impurity concentration. At the same time, the room temperature hole mobility is lower than that of electron with the same germanium content and doping concentration. If the parameters are correctly chosen, the model can also be used to calculate the hole mobility of other crystal faces with arbitrary orientation. So, it lays a useful foundation for strained silicon devices and circuits. 展开更多
关键词 subband hole occupancy scattering model germanium content hole mobility
原文传递
A-D-A small molecule donors based on pyrene and diketopyrrolopyrrole for organic solar cells
17
作者 Jing-Qi Xu Wenqing Liu +6 位作者 Shi-Yong Liu Jun Ling Jiangquan Mai Xinhui Lu Chang-Zhi Li Alex K.-Y. Jen Hongzheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第4期561-569,共9页
Three new electron donating small molecules (SMs), Pyr(EH-DPP)2, Pyr(HD-DPP)2 and PyrA(EH-DPP)2, are designed and synthesized through coupling electron rich pyrene core with electron deficient diketopyrrolopyr... Three new electron donating small molecules (SMs), Pyr(EH-DPP)2, Pyr(HD-DPP)2 and PyrA(EH-DPP)2, are designed and synthesized through coupling electron rich pyrene core with electron deficient diketopyrrolopyrrole (DPP) terminals, of which the derived organic solar cells (OSCs) exhibit interesting structure-performance correlation. It shows that the tune of their solubilizing side chains and n-bridge for the acceptor-donor-acceptor (A-D-A) SMs can significantly alter the resultant short-circuit current density and power conversion efficiency (PCE) in OSCs. The Pyr(EH-DPP)2 with short side chains displays broader absorption and higher hole mobility than the Pyr(HD-DPP)2 with long side chains. Although showing planar structure, the acetylene bridge-incorporated PyrA(EH-DPP)2 adapts an undesired edge-on packing and strong aggregation in film, leading to non-ideal morphology and poor miscibility with fullerene acceptors. As a result, the PCE of the solar cell based on Pyr(EH-DPP)2 is several times higher than those based on Pyr(HD-DPP): and PyrA(EH-DPP)2, indicating the A-D-A combination of polyaromatics with DPP would be the promising skeleton for developing photovoltaic semiconductors. 展开更多
关键词 solution-processed small molecules DIKETOPYRROLOPYRROLE PYRENE organic solar cells
原文传递
Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability 被引量:1
18
作者 Jiangjian Shi Yiming Li +4 位作者 Yusheng Li Huijue Wu Yanhong Luo Dongmei Li Qingbo Meng 《Science Bulletin》 SCIE EI CSCD 2021年第6期536-544,M0003,共10页
Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the ex... Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field.We propose a heterojunction route to help suppress ion migration,thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber.A heavily doped p-type(p^(+))thin layer semiconductor is introduced between the electron transporting layer(ETL)and perovskite absorber.The heterojunction charge depletion and electric field are limited to the ETL and p^(+)layers,while the perovskite absorber and hole transporting layer remain neutral.The p^(+)layer has a variety of candidate materials and is tolerant of defect density and carrier mobility,which makes this heterojunction route highly feasible and promising for use in practical applications. 展开更多
关键词 Perovskite solar cell Operational stability Ion migration HETEROJUNCTION Electric field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部