A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
Objective To observe value of 0D-1D coupling model and 3D fluid-structure interaction(FSI)model based on coronary CT angiography(CCTA)for displaying hemodynamic characteristics of coronary artery stenosis.Methods Base...Objective To observe value of 0D-1D coupling model and 3D fluid-structure interaction(FSI)model based on coronary CT angiography(CCTA)for displaying hemodynamic characteristics of coronary artery stenosis.Methods Based on CCTA data of the stenosed left anterior descending branch(LAD)in a patient with coronary heart disease,an 0D-1D coupling model and 3D FSI model were built,respectively.Then hemodynamic characteristic indexes,including the pressure,flow velocity and wall shear stress(WSS)were obtained in every 0.01 s during 1 s at 5 sampling points(i.e.sampling point 1—5)using these 2 models,respectively,and the consistencies of the results between models were evaluated with Spearman correlation coefficient r s.Results The time consuming for construction of 0D-1D coupling model and 3D FSI model was 0.033 min and 704 min,respectively.Both models showed basically distribution of the pressure,flow velocity and WSS of the stenosed LAD.For more details,the pressure at the stenosed segment of LAD and the proximal segment of stenosis were both higher,which gradually decreased at the distal segment of stenosis,and the flow velocity at the proximal segment of stenosis was in a relatively slow and uniform condition,with significantly increased flow velocity and WSS at the stenosed segment.Compared with 3D FSI model,0D-1D vascular coupling model was relatively unrefined and lack of distal flow lines when displaying blood flow velocity.For sampling point 2 at the stenosed segment of LAD,no significant consistency for pressure between 2 models was found(P=0.118),but strong consistency for the flow velocity and WSS(r s=0.730,0.807,both P<0.05).The consistencies of pressure,flow velocity and WSS between 2 models at the proximal and distal segment of stenosis,i.e.1,3—5 sampling points were week to moderate(r s=0.237—0.669,all P<0.05).Conclusion 0D-1D coupling model exhibited outstanding computational efficiency and might provide relatively reasonable results,while 3D FSI model showed higher accuracy for details and streamline when simulating LAD stenosis.展开更多
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
文摘Objective To observe value of 0D-1D coupling model and 3D fluid-structure interaction(FSI)model based on coronary CT angiography(CCTA)for displaying hemodynamic characteristics of coronary artery stenosis.Methods Based on CCTA data of the stenosed left anterior descending branch(LAD)in a patient with coronary heart disease,an 0D-1D coupling model and 3D FSI model were built,respectively.Then hemodynamic characteristic indexes,including the pressure,flow velocity and wall shear stress(WSS)were obtained in every 0.01 s during 1 s at 5 sampling points(i.e.sampling point 1—5)using these 2 models,respectively,and the consistencies of the results between models were evaluated with Spearman correlation coefficient r s.Results The time consuming for construction of 0D-1D coupling model and 3D FSI model was 0.033 min and 704 min,respectively.Both models showed basically distribution of the pressure,flow velocity and WSS of the stenosed LAD.For more details,the pressure at the stenosed segment of LAD and the proximal segment of stenosis were both higher,which gradually decreased at the distal segment of stenosis,and the flow velocity at the proximal segment of stenosis was in a relatively slow and uniform condition,with significantly increased flow velocity and WSS at the stenosed segment.Compared with 3D FSI model,0D-1D vascular coupling model was relatively unrefined and lack of distal flow lines when displaying blood flow velocity.For sampling point 2 at the stenosed segment of LAD,no significant consistency for pressure between 2 models was found(P=0.118),but strong consistency for the flow velocity and WSS(r s=0.730,0.807,both P<0.05).The consistencies of pressure,flow velocity and WSS between 2 models at the proximal and distal segment of stenosis,i.e.1,3—5 sampling points were week to moderate(r s=0.237—0.669,all P<0.05).Conclusion 0D-1D coupling model exhibited outstanding computational efficiency and might provide relatively reasonable results,while 3D FSI model showed higher accuracy for details and streamline when simulating LAD stenosis.