Three antagonistic yeasts, Trichosporon pullulans (Lindner.) Diddens and Lodder, Cryptococcus laurentii (Kuffer.) Skinner and Rhodotorula glutinis (Fresen.) F. C. Harrison, selected from over 50 yeasts on apple fruits...Three antagonistic yeasts, Trichosporon pullulans (Lindner.) Diddens and Lodder, Cryptococcus laurentii (Kuffer.) Skinner and Rhodotorula glutinis (Fresen.) F. C. Harrison, selected from over 50 yeasts on apple fruits, were investigated of their biocontrol efficacy against blue mould rot caused by Penicillium expansum Link in apple fruits. T. pullulans was identified to be a new yeast antagonist and was the most effective at inhibiting blue mould rot in the three yeasts. The effects of different concentrations of the three yeasts and addition Of nutrients, as well as combination with calcium on controlling blue mould rot in apples were presented in the paper. The results indicated that the higher the yeast concentrations, the more effective the yeasts on biocontrol activity. Addition of nutrients reduced the biocontrol capacity of the yeasts. Combination of 0.18 mol/L CaCl2 with C. laurentii cell suspensions could significantly enhance its effect to P. expansum in apple fruits, while the efficacy of calcium on biocontrol activity of T. pullulans or R. glutinis was not remarkable.展开更多
[Objective] The aim was to optimize experimental conditions of Gala apple NIR(Near Infrared)spectroscopy acquisition through study on the accuracy of NIR spectroscopy information under different influence factors.[M...[Objective] The aim was to optimize experimental conditions of Gala apple NIR(Near Infrared)spectroscopy acquisition through study on the accuracy of NIR spectroscopy information under different influence factors.[Method]Gala apple was taken as the experimental material,and FieldSpec3 spectrometer(Analytical Spectral Device Company,America)was employed to acquire the NIR spectroscopy at room temperature.Then,the effects of different conditions including the environmental stray light,instrument stability,different distance,different chromatic aberration,different sites and different shelf-life on spectroscopy acquisition were investigated.[Result]The stray light had a significant effect on the visible light region of NIR spectroscopy;FieldSpec3 spectrometer had higher stability in 9 h;the measure distance of 2.5-12.5 mm could obtain good repeatability of absorbance;the effects of different chromatic aberration of the same apple on spectra was acceptable;the spectral stability of equatorial plane of the apple was better than those of the bottom and stalk;at room temperature;different shelf-life could make significant influence to NIR spectroscopy of the apple simple.[Conclusion]This study will provide reference for the researchers and analysis workers of apple NIR spectroscopy.展开更多
Jihong is a variation bred by Shijiazhuang Pomology Institute of Hebei Academy of Agriculture and Forestry Sciences. The fruit is big,average fruit weight is234 g,the largest is 500 g. The fruit skin is thick red, eas...Jihong is a variation bred by Shijiazhuang Pomology Institute of Hebei Academy of Agriculture and Forestry Sciences. The fruit is big,average fruit weight is234 g,the largest is 500 g. The fruit skin is thick red, easy coloring and the coloring index is 95%. The flesh is crisp, juicy,and moderate sweet-sour taste. The soluble solid content is 16.0%,and it has good qualities,high and stable yield. It is mature at the end of October.展开更多
To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm...To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibra- tion techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.展开更多
The aim of this work was to verify the potential of infrared (IR) spectroscopy in near and mid regions to detect the beginning of the malolactic fermentation (MLF) occurring in a model-wine and the further cells a...The aim of this work was to verify the potential of infrared (IR) spectroscopy in near and mid regions to detect the beginning of the malolactic fermentation (MLF) occurring in a model-wine and the further cells autolysis. MLF in wine is a secondary biotransformation due to lactic acid bacteria that usually occurs spontaneou,;ly or after starter inoculation at the end of alcoholic fermentation. Nowadays, it is desirable to supply winemakers with a new rapid and non-destructive approach to monitor MLF progress and 1R spectroscopy technology appears to be suitable for this purpose. The transformation of L-malic acid into L-lactic acid was carried out by inoculating a synthetic wine with an Oenococcus oeni culture and it was monitored through microbiological and chemical methods. At the same time, Fourier transform near infrared (FT-NIR) spectral data, in diffusive transflection mode using an optic probe, and FT-IR spectra, using an germanium crystal attenuated total reflectance (ATR) cell, were collected. Principal component analysis of the spectra was able to identify absorption bands related to the key molecular modifications that took place during the L-malic acid transformation. Thus, the samples were discriminated according to the fermentation phase. Although this study is a preliminary approach, results confirm that near infrared (NIR) and mid infrared (MIR) spectroscopy could be successfully applied to detect the start of MLF and the autolysis of the lactic acid bacteria (LAB) cells.展开更多
Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT met...Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT methods, was chosen to study the molecular structure. Infrared and ultraviolet-visible spectra were obtained and compared with experiments. The ultraviolet-visible spectrum was also analyzed by the molecular orbital population. The geometries, and the infrared and ultraviolet-visible spectra in water were studied using DFT methods in combination with the polarized continuum model to predict the perturbations by the solvent effect.展开更多
Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil sampl...Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil samples were collected from 11 typical sites of apple orchards,and the croplands surrounding them.Near-infrared(NIR) and mid-infrared(MIR) spectra,combined with partial least square regression,were used to predict the soil parameters,including organic matter(OM) content,pH,and the contents of As,Cu,Zn,Pb,and Cr.Organic matter and pH were closely correlated with As and the heavy metals.The NIR model showed a high prediction accuracy for the determination of OM,pH,and As,with correlation coefficients(r) of 0.89,0.89,and 0.90,respectively.The predictions of these three parameters by MIR showed reduced accuracy,with r values of 0.77,0.84,and 0.92,respectively.The heavy metals could also be measured by spectroscopy due to their correlation with organic matter.Both NIR and MIR had high correlation coefficients for the determination of Cu,Zn,and Cr,with standard errors of prediction of 2.95,10.48,and 9.49 mg kg-1 for NIR and 3.69,5.84,and 6.94 mg kg-1 for MIR,respectively.Pb content behaved differently from the other parameters.Both NIR and MIR underestimated Pb content,with r values of 0.67 and 0.56 and standard errors of prediction of 3.46 and 2.99,respectively.Cu and Zn had a higher correlation with OM and pH and were better predicted than Pb and Cr.Thus,NIR spectra could accurately predict several soil parameters,metallic and nonmetallic,simultaneously,and were more feasible than MIR in analyzing soil parameters in the study area.展开更多
Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods....Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.The objective of this paper is to compare the performance of artificial neural network(ANN)(a nonlinear model)and principal component regression(PCR)(a linear model)based on visible and shortwave near infrared(VIS-SWNIR)(400-1000 nm)spectra in the non-destructive soluble solids content measurement of an apple.First,we used multiplicative scattering correction to pre-process the spectral data.Second,PCR was applied to estimate the optimal number of input variables.Third,the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models.The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN.Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.展开更多
文摘Three antagonistic yeasts, Trichosporon pullulans (Lindner.) Diddens and Lodder, Cryptococcus laurentii (Kuffer.) Skinner and Rhodotorula glutinis (Fresen.) F. C. Harrison, selected from over 50 yeasts on apple fruits, were investigated of their biocontrol efficacy against blue mould rot caused by Penicillium expansum Link in apple fruits. T. pullulans was identified to be a new yeast antagonist and was the most effective at inhibiting blue mould rot in the three yeasts. The effects of different concentrations of the three yeasts and addition Of nutrients, as well as combination with calcium on controlling blue mould rot in apples were presented in the paper. The results indicated that the higher the yeast concentrations, the more effective the yeasts on biocontrol activity. Addition of nutrients reduced the biocontrol capacity of the yeasts. Combination of 0.18 mol/L CaCl2 with C. laurentii cell suspensions could significantly enhance its effect to P. expansum in apple fruits, while the efficacy of calcium on biocontrol activity of T. pullulans or R. glutinis was not remarkable.
基金Supported by Transformation Project for Agricultural Science and Technology Achievements from Science and Technology Ministry(2009GB23260457)~~
文摘[Objective] The aim was to optimize experimental conditions of Gala apple NIR(Near Infrared)spectroscopy acquisition through study on the accuracy of NIR spectroscopy information under different influence factors.[Method]Gala apple was taken as the experimental material,and FieldSpec3 spectrometer(Analytical Spectral Device Company,America)was employed to acquire the NIR spectroscopy at room temperature.Then,the effects of different conditions including the environmental stray light,instrument stability,different distance,different chromatic aberration,different sites and different shelf-life on spectroscopy acquisition were investigated.[Result]The stray light had a significant effect on the visible light region of NIR spectroscopy;FieldSpec3 spectrometer had higher stability in 9 h;the measure distance of 2.5-12.5 mm could obtain good repeatability of absorbance;the effects of different chromatic aberration of the same apple on spectra was acceptable;the spectral stability of equatorial plane of the apple was better than those of the bottom and stalk;at room temperature;different shelf-life could make significant influence to NIR spectroscopy of the apple simple.[Conclusion]This study will provide reference for the researchers and analysis workers of apple NIR spectroscopy.
基金Supported by Hebei Science and Technology Plan Project(13226803D,13226817D)~~
文摘Jihong is a variation bred by Shijiazhuang Pomology Institute of Hebei Academy of Agriculture and Forestry Sciences. The fruit is big,average fruit weight is234 g,the largest is 500 g. The fruit skin is thick red, easy coloring and the coloring index is 95%. The flesh is crisp, juicy,and moderate sweet-sour taste. The soluble solid content is 16.0%,and it has good qualities,high and stable yield. It is mature at the end of October.
基金Projects (Nos. 30370371 and 60468002) supported by the NationalNatural Science Foundation of China
文摘To develop nondestructive acidity prediction for intact Fuji apples, the potential of Fourier transform near infrared (FT-NIR) method with fiber optics in interactance mode was investigated. Interactance in the 800 nm to 2619 nm region was measured for intact apples, harvested from early to late maturity stages. Spectral data were analyzed by two multivariate calibra- tion techniques including partial least squares (PLS) and principal component regression (PCR) methods. A total of 120 Fuji apples were tested and 80 of them were used to form a calibration data set. The influences of different data preprocessing and spectra treatments were also quantified. Calibration models based on smoothing spectra were slightly worse than that based on derivative spectra, and the best result was obtained when the segment length was 5 nm and the gap size was 10 points. Depending on data preprocessing and PLS method, the best prediction model yielded correlation coefficient of determination (r2) of 0.759, low root mean square error of prediction (RMSEP) of 0.0677, low root mean square error of calibration (RMSEC) of 0.0562. The results indicated the feasibility of FT-NIR spectral analysis for predicting apple valid acidity in a nondestructive way.
文摘The aim of this work was to verify the potential of infrared (IR) spectroscopy in near and mid regions to detect the beginning of the malolactic fermentation (MLF) occurring in a model-wine and the further cells autolysis. MLF in wine is a secondary biotransformation due to lactic acid bacteria that usually occurs spontaneou,;ly or after starter inoculation at the end of alcoholic fermentation. Nowadays, it is desirable to supply winemakers with a new rapid and non-destructive approach to monitor MLF progress and 1R spectroscopy technology appears to be suitable for this purpose. The transformation of L-malic acid into L-lactic acid was carried out by inoculating a synthetic wine with an Oenococcus oeni culture and it was monitored through microbiological and chemical methods. At the same time, Fourier transform near infrared (FT-NIR) spectral data, in diffusive transflection mode using an optic probe, and FT-IR spectra, using an germanium crystal attenuated total reflectance (ATR) cell, were collected. Principal component analysis of the spectra was able to identify absorption bands related to the key molecular modifications that took place during the L-malic acid transformation. Thus, the samples were discriminated according to the fermentation phase. Although this study is a preliminary approach, results confirm that near infrared (NIR) and mid infrared (MIR) spectroscopy could be successfully applied to detect the start of MLF and the autolysis of the lactic acid bacteria (LAB) cells.
基金ACKNOWLEDGMENTS This work was supported by the Program for New Century Excellent Talents in University, the Science and Technology Foundation for Young Scholars in Sichuan Province, and the National Natural Science Foundation of China (No.10774104).
文摘Urea L-malic acid, a new second order nonlinear optical crystal, was studied using density functional theory (DFT). PBEPBE/6-31+G(d,p) method, the optimal method for comparing the results from the several DFT methods, was chosen to study the molecular structure. Infrared and ultraviolet-visible spectra were obtained and compared with experiments. The ultraviolet-visible spectrum was also analyzed by the molecular orbital population. The geometries, and the infrared and ultraviolet-visible spectra in water were studied using DFT methods in combination with the polarized continuum model to predict the perturbations by the solvent effect.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China(No.2008ZX07425-001)
文摘Soil quality monitoring is important in precision agriculture.This study aimed to examine the possibility of assessing the soil parameters in apple-growing regions using spectroscopic methods.A total of 111 soil samples were collected from 11 typical sites of apple orchards,and the croplands surrounding them.Near-infrared(NIR) and mid-infrared(MIR) spectra,combined with partial least square regression,were used to predict the soil parameters,including organic matter(OM) content,pH,and the contents of As,Cu,Zn,Pb,and Cr.Organic matter and pH were closely correlated with As and the heavy metals.The NIR model showed a high prediction accuracy for the determination of OM,pH,and As,with correlation coefficients(r) of 0.89,0.89,and 0.90,respectively.The predictions of these three parameters by MIR showed reduced accuracy,with r values of 0.77,0.84,and 0.92,respectively.The heavy metals could also be measured by spectroscopy due to their correlation with organic matter.Both NIR and MIR had high correlation coefficients for the determination of Cu,Zn,and Cr,with standard errors of prediction of 2.95,10.48,and 9.49 mg kg-1 for NIR and 3.69,5.84,and 6.94 mg kg-1 for MIR,respectively.Pb content behaved differently from the other parameters.Both NIR and MIR underestimated Pb content,with r values of 0.67 and 0.56 and standard errors of prediction of 3.46 and 2.99,respectively.Cu and Zn had a higher correlation with OM and pH and were better predicted than Pb and Cr.Thus,NIR spectra could accurately predict several soil parameters,metallic and nonmetallic,simultaneously,and were more feasible than MIR in analyzing soil parameters in the study area.
基金Project(No.UTM.J.10.01/13.14/1/127/1 Jld 3(48))supported by the Zamalah Scholarship from the Universiti Teknologi Malaysia
文摘Visible and near infrared spectroscopy is a non-destructive,green,and rapid technology that can be utilized to estimate the components of interest without conditioning it,as compared with classical analytical methods.The objective of this paper is to compare the performance of artificial neural network(ANN)(a nonlinear model)and principal component regression(PCR)(a linear model)based on visible and shortwave near infrared(VIS-SWNIR)(400-1000 nm)spectra in the non-destructive soluble solids content measurement of an apple.First,we used multiplicative scattering correction to pre-process the spectral data.Second,PCR was applied to estimate the optimal number of input variables.Third,the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models.The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN.Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.