MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post- transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells ha...MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post- transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells have important functions in acquired immune response; miRNAs regulate this immune response by targeting the mRNAs of genes involved in T cell developmentp proliferationj differentiationp and function. For instancep miR-181 family members function in progression by targeting Bcl2 and CD69, among others. MiR-17 to miR-92 clusters function by binding to CREB 1, PTEN, and Bim. Considering that the suppression ofT cell-mediated immune responses against tumor cells is involved in cancer progression, we should investigate the mechanism by which miRNA regulates T cells to develop new approaches for cancer treatment.展开更多
Human endogenous retroviruses(HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonf...Human endogenous retroviruses(HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K(HML6) and HERV-K(HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K(HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are twoedged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors.展开更多
Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. How...Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R- regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced FIkl+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor ceil population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Ely2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Ely2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3- Etv2 pathway.展开更多
Insects are a group of arthropods and the largest group of animals on Earth,with over one million species described to date.Like other life forms,insects suffer from viruses that cause disease and death.Viruses that a...Insects are a group of arthropods and the largest group of animals on Earth,with over one million species described to date.Like other life forms,insects suffer from viruses that cause disease and death.Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture.In contrast,viruses that are pathogenic to insect pests can be exploited as attractive biological control agents.All of these factors have led to an explosion in the amount of research into insect viruses in recent years,generating impressive quantities of information on the molecular and cellular biology of these viruses.Due to the wide variety of insect viruses,a better understanding of these viruses will expand our overall knowledge of their virology.Here,we review studies of several newly discovered RNA insect viruses in China.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.81171653 and 30972703)Natural Science Foundation of Jiangsu Province(Grant Nos.BK2011246 and BK2011247)Jiangsu Provincial Innovation Award BC2012093 by the Bureau of Science and Technology of Jiangsu Province
文摘MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post- transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells have important functions in acquired immune response; miRNAs regulate this immune response by targeting the mRNAs of genes involved in T cell developmentp proliferationj differentiationp and function. For instancep miR-181 family members function in progression by targeting Bcl2 and CD69, among others. MiR-17 to miR-92 clusters function by binding to CREB 1, PTEN, and Bim. Considering that the suppression ofT cell-mediated immune responses against tumor cells is involved in cancer progression, we should investigate the mechanism by which miRNA regulates T cells to develop new approaches for cancer treatment.
文摘Human endogenous retroviruses(HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K(HML6) and HERV-K(HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K(HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are twoedged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors.
基金This study was supported by grants from the National Natural Science Foundation of China (31030050, 81520108004, and 81470422 to H.-T.Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA01020204 to H.-T.Y.), the National Basic Research Program of China (2014CB965100 to H.-T.Y.), the National Science and Technology Major Project (2012ZX09501001 to H.-T.Y.), and the Shenzhen Science, Technology and Innovation Committee OCYI 20160428154108239 to K.O.).
文摘Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R- regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced FIkl+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor ceil population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Ely2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Ely2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3- Etv2 pathway.
基金supported by the National Natural Science Foundation of China (31270190 and 81201292 to Zhou Xi,31270189 to Hu YuanYang)the Chinese 111 Project (B06018)
文摘Insects are a group of arthropods and the largest group of animals on Earth,with over one million species described to date.Like other life forms,insects suffer from viruses that cause disease and death.Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture.In contrast,viruses that are pathogenic to insect pests can be exploited as attractive biological control agents.All of these factors have led to an explosion in the amount of research into insect viruses in recent years,generating impressive quantities of information on the molecular and cellular biology of these viruses.Due to the wide variety of insect viruses,a better understanding of these viruses will expand our overall knowledge of their virology.Here,we review studies of several newly discovered RNA insect viruses in China.