Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inabi...Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inability to accommodate oxygen vacancies in the rigid,isolated,3-fold tetrahedral rings of SrSi/GeO_(3)-based materials,and the considerable flexibility of BO_(n) polyhedra in terms of coordination number,rotation,deformation,and linkage,we report the first borate-base family of oxide ion conductors,(Gd/Y)_(1−x)Zn_(x)BO_(3−0.5x),through combined computational prediction and experimental verification.The oxygen vacancies in(Gd/Y)BO_(3)can be accommodated by forming B_(3)O_(8)units in isolated,3-fold,tetrahedral rings of B_(3)O_(9)and transported through a cooperative mechanism of oxygen exchange between the B_(3)O_(9)and B_(3)O_(8)units,which is assisted by the intermediate opening and extending of these units.This study opens a new scientific field of the borate system for designing and discovering oxide ion conductors.展开更多
基金the National Natural Science Foundation of China(22090043 and 21622101)Guangxi Natural Science Foundation(2019GXNSFGA245006)for financial support+2 种基金the National Natural Science Foundation of China(21527803 and 21621061)the Ministry of Science and Technology of China(2016YFA0301004)for financial supportthe funding from China Postdoctoral Science Foundation(8206300392)。
文摘Lowering the operating temperature of solid oxide fuel cells(SOFCs)has extensively stimulated the development of new oxide ion conductors.Here,inspired by the structural commonalities of oxide ion conductors,the inability to accommodate oxygen vacancies in the rigid,isolated,3-fold tetrahedral rings of SrSi/GeO_(3)-based materials,and the considerable flexibility of BO_(n) polyhedra in terms of coordination number,rotation,deformation,and linkage,we report the first borate-base family of oxide ion conductors,(Gd/Y)_(1−x)Zn_(x)BO_(3−0.5x),through combined computational prediction and experimental verification.The oxygen vacancies in(Gd/Y)BO_(3)can be accommodated by forming B_(3)O_(8)units in isolated,3-fold,tetrahedral rings of B_(3)O_(9)and transported through a cooperative mechanism of oxygen exchange between the B_(3)O_(9)and B_(3)O_(8)units,which is assisted by the intermediate opening and extending of these units.This study opens a new scientific field of the borate system for designing and discovering oxide ion conductors.