A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on ...A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on the theory of multiple attribute decision making, an algorithm of comprehensive and comparative evaluation for product environmental adaptability is presented. A program is built and used in an example of design improvement. The result shows that the proposed method and algorithm are practical and effective to the development of green products.展开更多
Life cycle assessment (LCA) is an important content of green design;the major phase of LCA is impact assessment. After classifying the impact factors, with grey-system theory, the evaluating grey-groups and their whit...Life cycle assessment (LCA) is an important content of green design;the major phase of LCA is impact assessment. After classifying the impact factors, with grey-system theory, the evaluating grey-groups and their whitening weighing functions are defined;the grey-cluster analysis of each classified impact is performed;based on analyzing results, the calculating method of classified impact index is given. By range of action, the impact classes are grouped to three groups - global impact, regional impact, and local impact;the calculating methods of grouped and overall impact index are presented. Finally, an application example of comparative choice of a category of products - three materials, steel, aluminum and engineering plastics is given.展开更多
In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required f...In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required for an expected transmission capacity and propose a capacity-power formula based on the energy conservation and the Shannon capacity theorem.Two novel definitions of cell interference depth and handoff dynamic model are introduced and the corresponding expression of energy efficiency function is derived.Numerical results show that the energy efficiency function is closely correlated with the transmitted/received power required and the cell radius.Our work provides a useful basis for research and evaluation on green design and technology of cellular networks.展开更多
文摘A quantitative and comprehensive method of product life cycle assessment(LCA) with fuzzy theory is developed, which will help designers to select the optimum design scheme for product life cycle design(LCD). Based on the theory of multiple attribute decision making, an algorithm of comprehensive and comparative evaluation for product environmental adaptability is presented. A program is built and used in an example of design improvement. The result shows that the proposed method and algorithm are practical and effective to the development of green products.
文摘Life cycle assessment (LCA) is an important content of green design;the major phase of LCA is impact assessment. After classifying the impact factors, with grey-system theory, the evaluating grey-groups and their whitening weighing functions are defined;the grey-cluster analysis of each classified impact is performed;based on analyzing results, the calculating method of classified impact index is given. By range of action, the impact classes are grouped to three groups - global impact, regional impact, and local impact;the calculating methods of grouped and overall impact index are presented. Finally, an application example of comparative choice of a category of products - three materials, steel, aluminum and engineering plastics is given.
基金the National Science Foundation of China,the Hi-Tech Research and Development Program of China of Mobile Internet
文摘In this paper,we discuss in detail the basic issue of green design and consider an energy efficiency function as the metric to evaluate green cellular networks.Specifically,we investigate the transmit power required for an expected transmission capacity and propose a capacity-power formula based on the energy conservation and the Shannon capacity theorem.Two novel definitions of cell interference depth and handoff dynamic model are introduced and the corresponding expression of energy efficiency function is derived.Numerical results show that the energy efficiency function is closely correlated with the transmitted/received power required and the cell radius.Our work provides a useful basis for research and evaluation on green design and technology of cellular networks.