By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematica...By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematical model, a two-parameter optimization problem of quadrant elevation and rocket ignition time is studied. Using the atmosphere mathematical model, the best glide-starting point of the downward trajectory is determined. With an optimal control mathematical model, the ERGM optimal glide trajectory is obtained.展开更多
[Objective] The aim was to learn the soil nutrient status of the main rapeseed planting areas in Linxiang County,Yunnan Province,and propose full production potential of soil and fertilizer recommendations,thereby pro...[Objective] The aim was to learn the soil nutrient status of the main rapeseed planting areas in Linxiang County,Yunnan Province,and propose full production potential of soil and fertilizer recommendations,thereby promoting local rapeseed production and income.[Method] The soil samples collected in field and tested in laboratory,with amount of fertilizer needed by rapeseed investigation were combined to calculate the formulated fertilization.[Result] Most of the soil organic matter and nutrient content of NPK were at the middle or higher level in the main rapeseed planting areas in Linxiang County.However,more than half of the soils were acidic or strongly acidic,and the soil p H maintained below 5.5.The shortage soil boron was more serious,the average content and nearly 60% of the sample of soil available boron were less than 0.5 mg/kg.[Conclusion] The formulated fertilization recommendations were identified as follows.To achieve the goal of 3 750 kg/hm^2240,150 and 75 kg/ha,if the application amount of manure was 15 000 kg/h,the total fertilizer N,P2O5,K2 O amount applied were separately 300,195 and 195 kg/hm^2.The chemical fertilizer N,P2O5,K2 O amount applied should be respectively 240,150 and 75 kg/hm^2,if the application amount of manure was 15 000 kg/hm^2.The nitrogen species of urea(containing N 46%),causing weakest effect on soil acidification,was selected and applied about with 525 kg/hm^2.The alkaline calcium magnesium phosphate(P2O520%),alternating superphosphate,was applied with about 750 kg/hm^2.Sulfuric acid potassium(K2O 50%) was applied with about 150 kg/hm^2.About 7.5kg/hm^2 borax was applied into soil as basal fertilizer,while spraying 7.5 kg/hm^2 fluid boron at the Bolting stag.展开更多
As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structu...As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structures and tectonic coal in the No.11-2 coalseams.The results show that 9 modes of lithologic association can form interlayer-glidingstructures.It is more easy for rock slip to occur when the lithologic associations are mainroof + coal seam + immediate floor type, compound roof+immediate roof + coal seam +immediate floor type and immediate roof + coal seam + immediate floor type.Lithologicassociations of roof and floor are the precondition to the formation of interlayer-glidingstructures.展开更多
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th...We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.展开更多
Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the ch...Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.展开更多
A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the contr...A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.展开更多
Liu Xiang of China set a world mark in the 110-meter hurdles on July 12, breaking the record he shared with Britain’s Colin Jackson. Liu’s time of 12.88 seconds at the IAAF Super Grand Prix athletics meeting in Laus...Liu Xiang of China set a world mark in the 110-meter hurdles on July 12, breaking the record he shared with Britain’s Colin Jackson. Liu’s time of 12.88 seconds at the IAAF Super Grand Prix athletics meeting in Laussane, Switzerland was 0.03 better than the record he matched in winning gold at the 2004 Athens Olympics.展开更多
The entry-glide guidance strategy for hypersonic vehicles that can satisfy both terminal and path constraints is investigated in this paper.We propose a quasi-equilibrium glide adaptive guidance methodology based on t...The entry-glide guidance strategy for hypersonic vehicles that can satisfy both terminal and path constraints is investigated in this paper.We propose a quasi-equilibrium glide adaptive guidance methodology based on the quasi-equilibrium glide condition(QEGC),which innovatively utilizes the quasi-equilibrium glide phenomenon in lifting entry.With the aid of QEGC,both range and terminal velocity can be predicted analytically with high precision.The path constraints are converted into angle of attack constraints,which has been difficult to realize by using traditional predictive guidance methods.The algorithm is independent of the standard trajectory.All the guidance commands,including the bank angle and the angle of attack,are calculated analytically in real time,which endows the algorithm with sufficient adapbility.The results of a CAV-H vehicle guidance test show that the algorithm leads the vehicle along a quasi-equilibrium glide trajectory satisfying both the terminal and path constraints and has sufficient flexibility for occasional mission changes.Furthermore,the robustness of the guidance algorithm under disturbances is validated through a Monte Carlo simulation.展开更多
We propose a method to establish a dynamic model for a wave glider, a wave-propelled sea surface vehicle that can make use of wave energy to obtain thrust. The vehicle, composed of a surface float and a submerged glid...We propose a method to establish a dynamic model for a wave glider, a wave-propelled sea surface vehicle that can make use of wave energy to obtain thrust. The vehicle, composed of a surface float and a submerged glider in sea water, is regarded as a two-particle system. Kane's equations are used to establish the dynamic model. To verify the model, the design of a testing prototype is proposed and pool trials are conducted. The speeds of the vehicle under different sea conditions can be computed using the model, which is verified by pool trials. The optimal structure parameters useful for vehicle designs can also be obtained from the model. We illustrate how to build an analytical dynamics model for the wave glider, which is a crucial basis for the vehicle's motion control. The dynamics model also provides foundations for an off-line simulation of vehicle performance and the optimization of its mechanical designs.展开更多
Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents ...Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents are weak; during these times, birds mainly use flapping (powered) flight which increases energy consumption and mortality risk. As a result, some species have evolved strategies to reduce the amount of time spent over water by taking extensive detours over land. In this paper, we con- ducted a meta-analysis of water-crossing tendencies in Afro-Palearctic migrating raptors in relation to their morphology, their flight performance, and their phylogenetic relationships. In particular, we considered the aspect ratio (calculated as the wing span squared divided by wing area), the energetic cost of powered flight, and the maximum water crossing length regularly performed by adult birds. Our results suggest that energy consumption during powered flight predominately affects the ability of raptors to fly over water surfaces展开更多
Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identifica...Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance.展开更多
An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing bet...An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.展开更多
文摘By the study of extended range guided munitions (ERGM) trajectory characteristics, ERGM free-flight and glide trajectory characteristics are revealed and illustrated. On the basis of free-flight trajectory mathematical model, a two-parameter optimization problem of quadrant elevation and rocket ignition time is studied. Using the atmosphere mathematical model, the best glide-starting point of the downward trajectory is determined. With an optimal control mathematical model, the ERGM optimal glide trajectory is obtained.
基金The National Key Technology R&D Program(2012BAD40B02)~~
文摘[Objective] The aim was to learn the soil nutrient status of the main rapeseed planting areas in Linxiang County,Yunnan Province,and propose full production potential of soil and fertilizer recommendations,thereby promoting local rapeseed production and income.[Method] The soil samples collected in field and tested in laboratory,with amount of fertilizer needed by rapeseed investigation were combined to calculate the formulated fertilization.[Result] Most of the soil organic matter and nutrient content of NPK were at the middle or higher level in the main rapeseed planting areas in Linxiang County.However,more than half of the soils were acidic or strongly acidic,and the soil p H maintained below 5.5.The shortage soil boron was more serious,the average content and nearly 60% of the sample of soil available boron were less than 0.5 mg/kg.[Conclusion] The formulated fertilization recommendations were identified as follows.To achieve the goal of 3 750 kg/hm^2240,150 and 75 kg/ha,if the application amount of manure was 15 000 kg/h,the total fertilizer N,P2O5,K2 O amount applied were separately 300,195 and 195 kg/hm^2.The chemical fertilizer N,P2O5,K2 O amount applied should be respectively 240,150 and 75 kg/hm^2,if the application amount of manure was 15 000 kg/hm^2.The nitrogen species of urea(containing N 46%),causing weakest effect on soil acidification,was selected and applied about with 525 kg/hm^2.The alkaline calcium magnesium phosphate(P2O520%),alternating superphosphate,was applied with about 750 kg/hm^2.Sulfuric acid potassium(K2O 50%) was applied with about 150 kg/hm^2.About 7.5kg/hm^2 borax was applied into soil as basal fertilizer,while spraying 7.5 kg/hm^2 fluid boron at the Bolting stag.
基金Supported by the National Natural Science Foundation of China(40772092)
文摘As a case study of the Panji No.1 Coal Mine in Anhui Province, based on thesite measured and statistical data, summarized the lithologic associations, characteristicsand distribution laws of interlayer-gliding structures and tectonic coal in the No.11-2 coalseams.The results show that 9 modes of lithologic association can form interlayer-glidingstructures.It is more easy for rock slip to occur when the lithologic associations are mainroof + coal seam + immediate floor type, compound roof+immediate roof + coal seam +immediate floor type and immediate roof + coal seam + immediate floor type.Lithologicassociations of roof and floor are the precondition to the formation of interlayer-glidingstructures.
基金Project(51779052)supported by the National Natural Science Foundation of ChinaProject(QC2016062)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(614221503091701)supported by the Research Fund from Science and Technology on Underwater Vehicle Laboratory,ChinaProject(LBH-Q17046)supported by the Heilongjiang Postdoctoral Funds for Scientific Research Initiation,ChinaProject(HEUCFP201741)supported by the Fundamental Research Funds for the Central Universities,China
文摘We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.
文摘Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.
基金Supported by the State Key Program of National Natural Science Foundation of China (No. 50835006)Science & Technology Support Planning Foundation of Tianjin (No. 09ZCKFGX03000)
文摘A power system with proton exchange membrane fuel cells (PEMFC) was designed for thermal underwater glider.Heat generated by PEMFC is used as the propulsion power of the glider,and the electricity is used in the control and sensor system.An electric energy storage system (ESS) is required which possesses high power density with good cycle life.Ultracapacitors which exhibit high power density and cycle life are considered as energy storage devices.Simulations based on a specific voyage condition indicate that ESS with ultracapacitors has positive effects on reducing the output power demand of PEMFC and lightening the power system.Experimental results show that the state of charge (SOC) is related to the capacitance and resistance in ultracapacitor ESS.
文摘Liu Xiang of China set a world mark in the 110-meter hurdles on July 12, breaking the record he shared with Britain’s Colin Jackson. Liu’s time of 12.88 seconds at the IAAF Super Grand Prix athletics meeting in Laussane, Switzerland was 0.03 better than the record he matched in winning gold at the 2004 Athens Olympics.
基金supported by the National Natural Science Foundation of China (Grant No. 61104200)
文摘The entry-glide guidance strategy for hypersonic vehicles that can satisfy both terminal and path constraints is investigated in this paper.We propose a quasi-equilibrium glide adaptive guidance methodology based on the quasi-equilibrium glide condition(QEGC),which innovatively utilizes the quasi-equilibrium glide phenomenon in lifting entry.With the aid of QEGC,both range and terminal velocity can be predicted analytically with high precision.The path constraints are converted into angle of attack constraints,which has been difficult to realize by using traditional predictive guidance methods.The algorithm is independent of the standard trajectory.All the guidance commands,including the bank angle and the angle of attack,are calculated analytically in real time,which endows the algorithm with sufficient adapbility.The results of a CAV-H vehicle guidance test show that the algorithm leads the vehicle along a quasi-equilibrium glide trajectory satisfying both the terminal and path constraints and has sufficient flexibility for occasional mission changes.Furthermore,the robustness of the guidance algorithm under disturbances is validated through a Monte Carlo simulation.
基金Project supported by the National Natural Science Foundation of China (Nos. 51305396 and U1509210) and the Fundamental Research Funds for the Central Universities, China
文摘We propose a method to establish a dynamic model for a wave glider, a wave-propelled sea surface vehicle that can make use of wave energy to obtain thrust. The vehicle, composed of a surface float and a submerged glider in sea water, is regarded as a two-particle system. Kane's equations are used to establish the dynamic model. To verify the model, the design of a testing prototype is proposed and pool trials are conducted. The speeds of the vehicle under different sea conditions can be computed using the model, which is verified by pool trials. The optimal structure parameters useful for vehicle designs can also be obtained from the model. We illustrate how to build an analytical dynamics model for the wave glider, which is a crucial basis for the vehicle's motion control. The dynamics model also provides foundations for an off-line simulation of vehicle performance and the optimization of its mechanical designs.
文摘Raptors primarily use soaring-gliding flight which exploits thermals and ridge lifts over land to reduce energetic costs However during migration, these birds often have to cross water surfaces where thermal currents are weak; during these times, birds mainly use flapping (powered) flight which increases energy consumption and mortality risk. As a result, some species have evolved strategies to reduce the amount of time spent over water by taking extensive detours over land. In this paper, we con- ducted a meta-analysis of water-crossing tendencies in Afro-Palearctic migrating raptors in relation to their morphology, their flight performance, and their phylogenetic relationships. In particular, we considered the aspect ratio (calculated as the wing span squared divided by wing area), the energetic cost of powered flight, and the maximum water crossing length regularly performed by adult birds. Our results suggest that energy consumption during powered flight predominately affects the ability of raptors to fly over water surfaces
基金supported by Beihang University and Institution of China Academy of Aerospace Aerodynamics
文摘Steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic char- acteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the filth-order polynomial model, and found that the tbrmer cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51521064) and the National High-Tecb R&D Program (863) of China (No. 2014AA09A513 )
文摘An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.