期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
“耗散”理论与开放教学 被引量:4
1
作者 陈建先 陈万华 《学科教育》 北大核心 2002年第6期22-25,共4页
本文立足于课堂教学改革的前沿 ,以“耗散”结构理论透视当前小学课堂教学 ,提出要打破封闭的静态课堂 ,建立一个开放的充满活力的课堂教学新体系 ,关键是要实现课堂教学的“耗散”(即从有序→无序→有序 )
关键词 “耗散”理论 开放教学 小学教学 课堂教学 教学目标 教学评价 学科教学
下载PDF
“耗散结构”理论与生物课堂教学的开放性 被引量:1
2
作者 赵法茂 《中学生物教学》 2004年第5期9-11,共3页
关键词 中学 生物教学 课堂教学 “耗结构”理论 开放性教学
下载PDF
Theory of Quantum Dissipation in a Class of Non-Gaussian Environments
3
作者 徐瑞雪 刘阳 +1 位作者 张厚道 严以京 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期395-403,I0001,共10页
In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic bath coupling environment, based on an extended algebraic statistical quasi-particle approach. To validate the new ingredien... In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic bath coupling environment, based on an extended algebraic statistical quasi-particle approach. To validate the new ingredient of the underlying dissipaton algebra, we derive an extended Zusman equation via a totally different approach. We prove that the new theory, if it starts with the identical setup, constitutes the dynamical resolutions to the extended Zusman equation. Thus, we verify the generalized (non-Gaussian) Wick's theorem with dissipatons-pair added. This new algebraic ingredient enables the dissipaton approach being naturally extended to nonlinear coupling environments. Moreover, it is noticed that, unlike the linear bath coupling case, the influence of a non-Gaussian environment cannot be completely characterized with the linear response theory. The new theory has to take this fact into account. The developed DEOM theory manifests the dynamical interplay between dissipatons and nonlinear bath coupling descriptors that will be specified. Numerical demonstrations will be given with the optical line shapes in quadratic coupling environment. 展开更多
关键词 Non-Gaussian environment Quantum dissipation Dissipaton theory
下载PDF
Evaluations on Some Perturbative Quantum Dissipation Approaches
4
作者 张影 丁津津 徐瑞雪 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期655-658,745,共5页
We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissip... We compare the results of some perturbative quantum dissipation approaches to the exact linear absorption of two state systems. The considered approximate methods are the so-called complete second-order quantum dissipation theories, in either the chronological ordering prescription or the correlated driving-dissipation form. Analytical results can be derived for the linear absorption of two-state systems. Assessments on their applicability are then made by comparison to the exact results. 展开更多
关键词 Quantum dissipation Perturbation theory Absorption spectroscopy Correlated driving-dissipation equation
下载PDF
A novel method based on entransy theory for setting energy targets of heat exchanger network 被引量:5
5
作者 Li Xia Yuanli Feng +1 位作者 Xiaoyan Sun Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1037-1042,共6页
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ... A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency. 展开更多
关键词 Heat transfer Process systems Entransy Energy target T-Qdiagram
下载PDF
Rock burst prevention based on dissipative structure theory 被引量:17
6
作者 Song Dazhao Wang Enyuan +2 位作者 Li Nan Jin Mingyue Xue Shipeng 《International Journal of Mining Science and Technology》 2012年第2期159-163,共5页
Dynamic collapses of deeply mined coal rocks are severe. In order to explore new ideas for rock burst pre- vention, the relationship between entropy equations and dissipative structure was studied, and a con- cept-roc... Dynamic collapses of deeply mined coal rocks are severe. In order to explore new ideas for rock burst pre- vention, the relationship between entropy equations and dissipative structure was studied, and a con- cept-rock burst activity system (RAS) was proposed and its entropy was analyzed. The energy features of RAS were analyzed, and the relationship between electromagnetic radiation (EMR) intensity E and dis- sipated energy Ud was initially established. We suggest that rock burst normally happens only when d1S - 〈〈 -des in RAS; RAS is the dissipative structure before collapse, and after which it become a new orderly structure, i.e., a "dead", a statically orderly structure. We advanced that the effective way to prevent rock burst is to introduce entropy to the system for it keeps the system away from the dissipative structure. E and Ud of RAS are positively related, which is used as a bridge between dissipative structure theory and rock burst prevention engineering applications. Based on this, and using the data of rock burst prevention for working face No. 250205up of Yanbei coal mine, an engineering verification for the dissipative struc- ture of RAS was carried out. which showed good results. 展开更多
关键词 Rock burst preventionDissipative structureEntropy changeElectromagnetic radiation
下载PDF
Scattering loss in optical waveguide with trapezoidal cross section 被引量:1
7
作者 彭文强 吴宇列 +1 位作者 刘勇 尹自强 《Journal of Central South University》 SCIE EI CAS 2012年第5期1317-1321,共5页
To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ... To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model. 展开更多
关键词 trapezoidal core waveguide perturbation equivalent method modified effective-index method scattering loss
下载PDF
Chaos Control and Modified Projective Synchronization of Chaotic Dissipative Gyroscope Systems
8
作者 Faezeh Farivar Mahdi Aliyari Shoorehdeli +1 位作者 Mohammad Teshnehlabs Mohammad Ali Nekoui 《Journal of Energy and Power Engineering》 2012年第1期90-100,共11页
This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic ... This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control. 展开更多
关键词 Dissipative gyroscope chaos control modified projective synchronization variable structure control.
下载PDF
Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft 被引量:19
9
作者 CHENG XueTao XU XiangHua LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期964-971,共8页
For distribution optimization of the flow rate of cold fluid and heat transfer area in the parallel thermal network of the thermal control system in spacecraft,a physical and mathematical model is set up,analyzed and ... For distribution optimization of the flow rate of cold fluid and heat transfer area in the parallel thermal network of the thermal control system in spacecraft,a physical and mathematical model is set up,analyzed and discussed with the entransy theory.It is found that the optimization objective of this problem and the optimization direction of the extremum entransy dissipation principle are consistent in theory.For a two-branch thermal network system,the distributions of the flow rate of the cold fluid and the heat transfer area are optimized by calculating the extremum entransy dissipation with the Newton method.The influential factors of the optimized distributions are also analyzed and discussed.The results show that the main influence factors are the heat transfer rate of the branches and the total heat transfer area.The total flow rate of the cold fluid has a threshold,beyond which further increasing its value brings very little influence on the optimization results.Moreover,the difference between the extremum entransy dissipation principle and the minimum entropy generation principle is also discussed when they are used to analyze the problem in this paper,and the extremum entransy dissipation principle is found to be more suitable.In addition,the Newton method is mathematically efficient to solve the problem,which could accomplish the optimized distribution in a very short time for a ten-branch thermal network system. 展开更多
关键词 thermal control system parallel thermal network optimization design extremum entransy dissipation principle
原文传递
Entransy dissipation,entransy-dissipation-based thermal resistance and optimization of one-stream hybrid thermal network 被引量:11
10
作者 WANG WenHua CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期529-536,共8页
The one-stream hybrid thermal network is analyzed and discussed based on the entransy theory,and the results are compared with those from the entropy generation optimization.The theoretical analysis indicates that the... The one-stream hybrid thermal network is analyzed and discussed based on the entransy theory,and the results are compared with those from the entropy generation optimization.The theoretical analysis indicates that the minimum heat-flow-weighted temperature of the thermal networks corresponds to the minimum entransy dissipation rate and the minimum thermal resistance.For a simple hybrid thermal network consisting of three thermal components,the expression of entransy dissipation is conducted,and the heat transfer area and the mass flow rate are calculated and optimized.The optimal results are obtained in order to minimize the entransy dissipation and the thermal resistance.The optimal results are calculated for various combinations,such as series connection,parallel connection and other hybrid connections.The numerical results are in accordance with the theoretical analysis.Both the theoretical analysis and the numerical results show that the minimum entransy dissipation and the minimum thermal resistance correspond to the minimum heat-flow-weighted temperature of the thermal networks while the minimum entropy generation does not. 展开更多
关键词 entransy dissipation thermal resistance entropy generation hybrid thermal network heat transfer optimization
原文传递
Power output analyses and optimizations of the Stirling cycle 被引量:13
11
作者 ZHOU Bing CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期228-236,共9页
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p... Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper. 展开更多
关键词 Stirling cycle entropy generation entransy loss finite time thermodynamics OPTIMIZATION
原文传递
Entransy dissipation/loss-based optimization of two-stage organic Rankine cycle(TSORC)with R245fa for geothermal power generation 被引量:10
12
作者 LI TaiLu YUAN ZhenHe +1 位作者 XU Peng ZHU JiaLing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第10期1524-1536,共13页
Based on organic Rankine cycle(ORC), the two-stage evaporation strategy is adopted to replace the single-stage evaporation to improve the system performance. In order to evaluate the temperature matching of the two-st... Based on organic Rankine cycle(ORC), the two-stage evaporation strategy is adopted to replace the single-stage evaporation to improve the system performance. In order to evaluate the temperature matching of the two-stage evaporation, a theoretical optimization model was established to optimize the two stage organic Rankine cycle(TSORC) based on the entransy theory and thermodynamics, with the ratio of the entransy dissipation rate of the TSORC to that of the ORC as the objective function. This paper aims to illuminate the improving degree of the system performance of the TSORC. The results show that the TSORC enhances the average evaporating temperature, thereby reducing the entransy dissipation rate in the evaporator and the total entransy dissipation rate. The maximal net power output is proportional to the entransy loss rate and inversely proportional to the entransy dissipation rate. However, compared with the ORC, the TSORC can output more power but requires a higher total thermal conductance. Moreover, there exists an optimal intermediate geothermal water temperature(IGWT) to maximize the net power output of the TSORC. The TSORC can be considered in engineering applications. 展开更多
关键词 two-stage organic rankine cycle evaporation mechanism entransy finite time thermodynamics
原文传递
Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy 被引量:7
13
作者 WU YanQiu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第5期692-700,共9页
In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objecti... In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer. 展开更多
关键词 entropy generation minimization entransy finite time thermodynamics endoreversible Otto cycle applied mathematics
原文传递
Entransy analyses of the thermodynamic cycle in a turbojet engine 被引量:8
14
作者 CHENG XueTao LIANG XinGang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第8期1160-1167,共8页
The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained... The analysis and the design of turbojet engines are of great importance to the improvement of the system performance.Many researchers focus on these topics,and many important and interesting results have been obtained.In this paper,the thermodynamic cycle in a turbojet engine is analyzed with the entransy theory and the T-Q diagram.The ideal thermodynamic cycle in which there is no inner irreversibility is analyzed,as well as the influences from some inner irreversible factors,such as the heat transfer process,the change of the component of the working fluid and the viscosity of the working fluid.For the discussed cases,it is shown that larger entransy loss rate always results in larger output power,while smaller entropy generation rate does not always.The corresponding T-Q diagrams are also presented,with which the change tendencies of the entransy loss rate and the output power can be shown very intuitively.It is shown that the entransy theory is applicable for analyzing the inner irreversible thermodynamic cycles discussed in this paper.Compared with the concept of entropy generation,the concept of entransy loss and the corresponding T-Q diagram are more suitable for describing the change of the output power of the analyzed turbojet engine no matter if the inner irreversible factors are considered. 展开更多
关键词 turbojet engine entransy analyses T-Q diagram inner irreversible cycle
原文传递
Thermal performance analysis of non-uniform height rectangular fin based on constructal theory and entransy theory 被引量:4
15
作者 YANG Ai Bo CHEN Lin Gen +2 位作者 XIE Zhi Hui FENG Hui Jun SUN Feng Rui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1882-1891,共10页
A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the ... A model of non-uniform height rectangular fin, in which the variation of base's thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance(DMTR) and the dimensionless equivalent thermal resistance(DETR) defined based on the entransy dissipation rate(EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins. 展开更多
关键词 constructal design entransy theory maximum thermal resistance equivalent thermal resistance rectangular fin generalized thermodynamic optimization
原文传递
Constructal entransy dissipation rate minimization for leaf-like fins 被引量:19
16
作者 FENG HuiJun CHEN LinGen SUN FengRui 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第2期515-526,共12页
Based on constructal theory,the constructs of the leaf-like fins are optimized by taking minimum entransy dissipation rate(for the fixed total thermal current,i.e.,the equivalent thermal resistance) as optimization ob... Based on constructal theory,the constructs of the leaf-like fins are optimized by taking minimum entransy dissipation rate(for the fixed total thermal current,i.e.,the equivalent thermal resistance) as optimization objective.The optimal constructs of the leaf-like fins with minimum dimensionless equivalent thermal resistance are obtained.The results show that there exists an optimal elemental leaf-like fin number,which leads to an optimal global heat conduction performance of the first order leaf-like fin.The Biot number has little effects on the optimal elemental fin number,optimal ratios of length and width of the elemental and first order leaf-like fins;with the increase of the thermal conductivity ratio of the vein and blade,the optimal elemental fin number and optimal ratio of the length and width of the elemental leaf-like fin increase,and the optimal shape of the first order leaf-like fin becomes tubbier.The optimal construct based on entransy dissipation rate minimization is obviously different from that based on maximum temperature difference minimization.The dimensionless equivalent thermal resistance based on entransy dissipation rate minimization is reduced by 11.54% compared to that based on maximum temperature difference minimization,and the global heat conduction performance of the leaf-like fin is effectively improved.For the same volumes of the elemental and first order leaf-like fins,the minimum dimensionless equivalent thermal resistance of the first order of the leaf-like fin is reduced by 30.10% compared to that of the elemental leaf-like fin,and the global heat conduction performance of the first order leaf-like fin is obviously better than that of the elemental leaf-like fin.Essentially,this is because the temperature gradient field of the first order leaf-like fin based on entransy dissipation rate minimization is more homogenous than that of the elemental leaf-like fin.The dimensionless equivalent thermal resistance defined based on entransy dissipation rate reflects the average heat transfer performance of the leaf-like fin,and can provide some guidelines for the thermal design of the fins from the viewpoint of heat transfer optimization. 展开更多
关键词 constructal theory entransy dissipation rate leaf-like fin heat transfer optimization generalized thermodynamic optimization
原文传递
Constructal design for a steam generator based on entransy dissipation extremum principle 被引量:13
17
作者 XIAO QingHua CHEN LinGen SUN FengRui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1462-1468,共7页
Steam generator is optimized by applying entransy dissipation extremum principle and constructal theory and adopting analyti-cal method.The obtained results show that the optimal spacing between adjacent tubes,the mas... Steam generator is optimized by applying entransy dissipation extremum principle and constructal theory and adopting analyti-cal method.The obtained results show that the optimal spacing between adjacent tubes,the mass flow rate of gas and the maximum entransy dissipation rate all depend on the dimensionless diameter of one tube,the dimensionless pressure difference number and the dimensionless length of flow channel of gas.Besides the three dimensionless groups,the optimal numbers of riser tubes and downcomer tubes and their summation all depend on the dimensionless height of one tube.The maximum entransy dissipation rate increases as the pressure difference that drives the gas flowing increases,and as the diameter of one tube and the length of flow channel both decrease.The mean heat flux in the heat transfer process of hot gas grows greatly,and the performance of the system is improved.Compared with the optimal construct with heat transfer rate maximization,the optimal construct with entransy dissipation rate maximization can improved the heat transfer effect of the steam generator more. 展开更多
关键词 entransy dissipation extremum principle constructal theory steam generator entransy dissipation rate generalized thermodynamic optimization
原文传递
Wave interaction with a two-layer porous breakwater in the presence of step-type bottom
18
作者 Saista Tabssum Balaji Ramakrishnan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第11期36-47,共12页
Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude ... Oblique wave interaction with a two-layer breakwater consisting of perforated front and back wall in the presence of bottom undulations is analyzed.Wave characteristics are studied in the framework of small-amplitude wave theory,and Darcy’s law is used for flow past porous structures.The varying bottom topography spanned over a finite interval connected by two semi-infinite intervals of uniform water depths.Eigenfunction expansion method is used to handle the solution in the regions of uniform bottom and a modified mild-slope equation along with jump conditions is employed for varying bottom topography.Reflection,transmission,and wave energy dissipation coefficients are obtained numerically by applying the matrix method to understand the effects of several physical quantities such as wavenumber,porosity,and angle of incidence.The transmission coefficient reduces significantly and the wave energy dissipation is high for the present model.Also,Bragg scattering is analyzed in the presence of step-type rippled bottom and presented in this paper. 展开更多
关键词 Two-layer porous breakwater Mild-slope equation Bragg resonance Reflection coefficient Transmission coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部