Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat...Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.展开更多
Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with ...Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with 20 g/L sucrose on day 16 enhanced both the biomass and taxol production in 5-L bioreactors. Further investigation of the fed-batch cultures in a 20-L bioreactor showed that cultivation under a low dissolved oxygen tension (DOT) of 20% for the entire culture resulted in the highest taxol content of 0.98 mg/g DW, while the taxol production was lower than that with 40% and 60% DOT. Moreover, taxol accumulation was remarkably improved by the cultivation of cells initially under DOT of 60% for 20 d followed by changing the DOT to 20% for another 12 d. By combining the use of these two strategies, a maximum taxol content of 18.7 mg/L was obtained in a 20-L bioreactor.展开更多
Taguchi method with grey relational analysis was used to optimize the machining parameters with multiple performance characteristics in drilling hybrid metal matrix A1356/SiC-mica composites. Experiments were conducte...Taguchi method with grey relational analysis was used to optimize the machining parameters with multiple performance characteristics in drilling hybrid metal matrix A1356/SiC-mica composites. Experiments were conducted on a computer numerical control vertical machining centre and Lzs orthogonal array was chosen for the experiments. The drilling parameters namely spindle speed, feed rate, drill type and mass fraction of mica were optimized based on the multiple performance characteristics including thrust force, surface roughness, tool wear and burr height (exit). The results show that the feed rate and the type of drill are the most significant factors which affect the drilling process and the performance in the drilling process can be effectively improved by using this approach.展开更多
Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of c...Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.展开更多
A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to...A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.展开更多
The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are ...The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.展开更多
Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materia...Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materials ( GC Fuji Ⅱ LC, Vitremer^TM, Dyract AP and F2000^TM ) were placed in facial Class V cavity preparations in forty noncarious human molar teeth. Teeth were randomly assigned to 4 experimental groups of 10 teeth each. After thermal cycling( ×20, 5 -55℃ ) , the interface between dentin and restorations was spattercoated with gold and observed under scanning electron microscopy (SEM). Then the square and average width of margin gaps of central 1/3 interface were recorded with image analysis software. Results The data indicated no significant differences between all the restorative materials for both occlusal and gingival margins. Further analysis revealed there were statistically significant differences between occlusal margins and gingival margins for VitremerTM and Dyract AP, respectively. Conclusion None of the tested materials guaranteed margins free of microleakage. Resin-modified glass ionomer cements showed similar margin gaps to the polyacid-modified composite resins tested.展开更多
Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fi...Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fiber composite XLPE (cross-linked polyethylene) 2,500 mm2 cable system. This system has been installed in Cheongna district of Incheon city. KEPCO and LS Cable are also planning to build the cooling system in a tunnel in order to reduce the ambient temperature caused by currents. In this paper, the process of development, field installation, and final inspection test of the complete system will be described.展开更多
Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulate...Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulated results.The effects of various operating variables,such as ethanol feed location,acetic acid feed location,feed stage of reaction mixture of acetic acid and n-butanol,reflux ratio of ethyl acetate reactive distillation column,and distillate to feed ratio of n-butyl acetate column,on the ethanol/n-butanol conversions,ethyl acetate/n-butyl acetate purity,and energy consumption were investigated.The optimal results in the simulation study are as follows:ethanol feed location,15th stage;acetic acid feed location,eighth stage;feed location of reaction mixture of acetic acid and n-butanol,eighth stage;reflux ratio of ethyl acetate reactive distillation column,2.0;and distillate to feed ratio of n-butyl acetate,0.6.展开更多
The importance of energy has been rooted in every aspect of human life. If we have no access to electricity and depend on traditional biomass fuels to meet household energy demands, it will mean we cannot enjoy the mo...The importance of energy has been rooted in every aspect of human life. If we have no access to electricity and depend on traditional biomass fuels to meet household energy demands, it will mean we cannot enjoy the modern energy service. With the deepening international understanding of the issue, many countries have been promoting the practice of eliminating energy poverty, and the "universal access to affordable, clean and sustainable energy" has become one of the post 2015 UN development goals.展开更多
Metal/Air batteries are considered to be promising electricity storage devices given their compactness, environmental benignity and affordability. As a commonly available metal, aluminum has received great attention s...Metal/Air batteries are considered to be promising electricity storage devices given their compactness, environmental benignity and affordability. As a commonly available metal, aluminum has received great attention since its first use as an anode in a battery. Its high specific energy (even better volumetric energy density than lithium) makes it ideal for many primary battery applications. However, the development of A1/Air cell with alkaline electrolyte has been lagged behind mainly due to the unfavorable parasitic hydrogen generation. Herein, we designed and constructed a novel A1/H_2/Air tandem fuel cell to turn the adverse parasitic reaction into a useful process. The system consists of two anodes, namely, aluminum and hydrogen, and one common air-breathing cathode. The aluminum acts as both the anode for the A1/Air sub-cell and the source to generate hydrogen for the hydrogen/air sub-cell. The aluminum/air sub-cell has an open circuit voltage of 1.45 V and the H_2/Air sub-cell of 0.95 V. We demonstrated that the maximum power output of aluminum as a fuel was largely enhanced by 31% after incorporating the H_2/Air sub-cell with the tandem concept. In addition, a passive design was utilized in our tandem system to eliminate the dependence on auxiliary pumping sub-systems so that the whole system remained neat and eliminated the dependence of energy consuming pumps or heaters which were typically applied in micro fuel cells.展开更多
Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gol...Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gold nanostructures and nanocarbons, have been extensively explored for near-infrared (NIR) light triggered PTT in the past decade, a variety of organic photothermal agents have also emerged in recent years, aiming at replacing their inorganic counterparts which usually are not biodegradable. In this mini-review, we will summarize several typical classes of recently developed NIR-absorbing organic PTT nano- agents, which include NIR dye-containing micelles, porphysomes, protein-based agents, conjugated polymers, and organic/inorganic nanocomposites. The development of imaging-guided PTT and combination therapy will be introduced as well. Finally, the perspectives and challenges in the future development of PTT will be discussed.展开更多
More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interact...More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interactions. Therefore efforts should also be paid to investigate the combined toxicity of nanomaterials and pollutants. Herein, we studied the combined toxicity of oxi- dized multi-walled carbon nanotubes (O-MWCNTs) and zinc ions on ceils. It is found that cytotoxicity of the combined O-MWCNTs and zinc ions elevates significantly, compared with O-MWCNTs or zinc ions alone. This result comes from the assays of cell morphology, cell viability and proliferation, cell membrane integrity, mitochondrial membrane potential and cell apoptosis. Mechanism studies indicate that O-MWCNTs absorb zinc ions and form slight aggregation. These enhance remark- ably the cellular uptake of O-MWCNTs, and thus induce the death of cells by bringing in more zinc ions into cells. Our study indicates that the existence of nanomaterials could change the bioconsequence of other pollutants and emphasizes the im- portance of the combined toxicity research in the presence of nanomaterials.展开更多
This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In ex...This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.展开更多
In this article, the composite π-joint is investigated under bending loads. The "L" preform is the critical component regard- ing composite π-joint failure. The study is presented in the failure detection of a car...In this article, the composite π-joint is investigated under bending loads. The "L" preform is the critical component regard- ing composite π-joint failure. The study is presented in the failure detection of a carbon fiber composite π-joint structure under bending loads using fiber Bragg grating (FBG) sensor. Firstly, based on the general f'mite element method (FEM) software, the 3-D finite element (FE) model of composite π-joint is established, and the failure process and every lamina failure load of composite π-joint are investigated by maximum stress criteria. Then, strain distributions along the length of FBG are extracted, and the reflection spectra of FBG are calculated according to the strain distribution. Finally, to verify the numerical results, a test scheme is performed and the experimental spectra of FBG are recorded. The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions, and the computational error of failure load is less than 6.4%. Furthermore, it also verifies the feasibility of the damage detection system.展开更多
Since 2010, the export restraints of rare earth in China have been of great concern in the world. On March 13, 2012, the United States(U. S. ) , the European Union(EU) and Japan requested consultations with China ...Since 2010, the export restraints of rare earth in China have been of great concern in the world. On March 13, 2012, the United States(U. S. ) , the European Union(EU) and Japan requested consultations with China with respect to China's export restraints of rare earth, tungsten and molybdenum (" Rare Earth Case"). Although the export restraints of rare earth are similar in essence to the disputed measures related to the export restraints on various raw materials in 2009, namely the competition between China and other WTO members, the specific forms of restraints have been developed. Combining to the WTO n.des and latest dispute setdements, this paper makes an in-depth study of the dispute triggered by rare earth and tries to propose some countermeasures in attempt to provide resolution for the Rare Earth Case and safeguard legitimate interests of China.展开更多
Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercia...Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercial aromatic monomers in the presence of anhydrous aluminium chloride and dichloromethane,four kinds of conjugated microporous polymers(CMPs)were obtained.Detailed structural analysis confirmed that the resultant CMPs possessed abundant micropores with an extendedπ-conjugated skeleton.Under near-infrared(NIR)light irradiation(808 nm,1.0 W cm−2),all the CMPs showed fast heating-up behavior with their maximum temperatures higher than 150℃.Moreover,the efficiency of photothermal conversion(η)of the CMPs was found to increase linearly with the increase in the number of conjugated benzene rings within the monomer.Poly-TPE from tetraphenylethylene(TPE)and Poly-TP from o-terphenyl(TP)showed highηvalues of over 47%.Poly-TPE was additionally used as a photothermal filler to remotely and spatially control the shape recovery of thermal-sensitive shape memory polymers(SMPs),while its introduction(1 wt%)had little influence on the thermal and mechanical properties of the polymer matrixes.Owing to their excellent NIR photothermal performance as well as a one-step synthetic preparation,these CMPs may be promising photothermal materials for practical applications.展开更多
文摘Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.
文摘Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with 20 g/L sucrose on day 16 enhanced both the biomass and taxol production in 5-L bioreactors. Further investigation of the fed-batch cultures in a 20-L bioreactor showed that cultivation under a low dissolved oxygen tension (DOT) of 20% for the entire culture resulted in the highest taxol content of 0.98 mg/g DW, while the taxol production was lower than that with 40% and 60% DOT. Moreover, taxol accumulation was remarkably improved by the cultivation of cells initially under DOT of 60% for 20 d followed by changing the DOT to 20% for another 12 d. By combining the use of these two strategies, a maximum taxol content of 18.7 mg/L was obtained in a 20-L bioreactor.
基金SCSVMV University, Kanchipuram,India for funding and supporting this research work
文摘Taguchi method with grey relational analysis was used to optimize the machining parameters with multiple performance characteristics in drilling hybrid metal matrix A1356/SiC-mica composites. Experiments were conducted on a computer numerical control vertical machining centre and Lzs orthogonal array was chosen for the experiments. The drilling parameters namely spindle speed, feed rate, drill type and mass fraction of mica were optimized based on the multiple performance characteristics including thrust force, surface roughness, tool wear and burr height (exit). The results show that the feed rate and the type of drill are the most significant factors which affect the drilling process and the performance in the drilling process can be effectively improved by using this approach.
基金National Key Research and Development Project of China(No.2018YFB1701200)。
文摘Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.
基金Supported by the National Natural Science Foundation of China (20804007) the State Key Laboratory of Fine Chemicals(KF1014)
文摘A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.
基金Project (No. 2002AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The electrical and thermal performances of a simulated 60 kW Proton Exchange Membrane Fuel Cell (PEMFC) cogeneration system are first analyzed and then strategies to make the system operation stable and efficient are developed. The system configuration is described first, and then the power response and coordination strategy are presented on the basis of the electricity model. Two different thermal models are used to estimate the thermal performance of this cogeneration system, and heat management is discussed. Based on these system designs, the 60 kW PEMFC cogeneration system is analyzed in detail. The analysis results will be useful for further study and development of the system.
文摘Objective To assess the microleakage of Class V restorations made with two resin-modified glass ionomer cements (RMGICs) and two polyacid-modified composite resins (PMCRs). Methods Restorations of the four materials ( GC Fuji Ⅱ LC, Vitremer^TM, Dyract AP and F2000^TM ) were placed in facial Class V cavity preparations in forty noncarious human molar teeth. Teeth were randomly assigned to 4 experimental groups of 10 teeth each. After thermal cycling( ×20, 5 -55℃ ) , the interface between dentin and restorations was spattercoated with gold and observed under scanning electron microscopy (SEM). Then the square and average width of margin gaps of central 1/3 interface were recorded with image analysis software. Results The data indicated no significant differences between all the restorative materials for both occlusal and gingival margins. Further analysis revealed there were statistically significant differences between occlusal margins and gingival margins for VitremerTM and Dyract AP, respectively. Conclusion None of the tested materials guaranteed margins free of microleakage. Resin-modified glass ionomer cements showed similar margin gaps to the polyacid-modified composite resins tested.
文摘Due to the increasing demand of replacing large capacity overhead lines with underground cables in Korea, KEPCO (Korea Electric Power Corporation) and LS Cable (LS Cable & System) have developed 345 kV optical fiber composite XLPE (cross-linked polyethylene) 2,500 mm2 cable system. This system has been installed in Cheongna district of Incheon city. KEPCO and LS Cable are also planning to build the cooling system in a tunnel in order to reduce the ambient temperature caused by currents. In this paper, the process of development, field installation, and final inspection test of the complete system will be described.
基金Supported by the National Natural Science Foundation of China(21376053)
文摘Based on a previous investigation,a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distillation.An experimental setup was established to verify the simulated results.The effects of various operating variables,such as ethanol feed location,acetic acid feed location,feed stage of reaction mixture of acetic acid and n-butanol,reflux ratio of ethyl acetate reactive distillation column,and distillate to feed ratio of n-butyl acetate column,on the ethanol/n-butanol conversions,ethyl acetate/n-butyl acetate purity,and energy consumption were investigated.The optimal results in the simulation study are as follows:ethanol feed location,15th stage;acetic acid feed location,eighth stage;feed location of reaction mixture of acetic acid and n-butanol,eighth stage;reflux ratio of ethyl acetate reactive distillation column,2.0;and distillate to feed ratio of n-butyl acetate,0.6.
文摘The importance of energy has been rooted in every aspect of human life. If we have no access to electricity and depend on traditional biomass fuels to meet household energy demands, it will mean we cannot enjoy the modern energy service. With the deepening international understanding of the issue, many countries have been promoting the practice of eliminating energy poverty, and the "universal access to affordable, clean and sustainable energy" has become one of the post 2015 UN development goals.
文摘Metal/Air batteries are considered to be promising electricity storage devices given their compactness, environmental benignity and affordability. As a commonly available metal, aluminum has received great attention since its first use as an anode in a battery. Its high specific energy (even better volumetric energy density than lithium) makes it ideal for many primary battery applications. However, the development of A1/Air cell with alkaline electrolyte has been lagged behind mainly due to the unfavorable parasitic hydrogen generation. Herein, we designed and constructed a novel A1/H_2/Air tandem fuel cell to turn the adverse parasitic reaction into a useful process. The system consists of two anodes, namely, aluminum and hydrogen, and one common air-breathing cathode. The aluminum acts as both the anode for the A1/Air sub-cell and the source to generate hydrogen for the hydrogen/air sub-cell. The aluminum/air sub-cell has an open circuit voltage of 1.45 V and the H_2/Air sub-cell of 0.95 V. We demonstrated that the maximum power output of aluminum as a fuel was largely enhanced by 31% after incorporating the H_2/Air sub-cell with the tandem concept. In addition, a passive design was utilized in our tandem system to eliminate the dependence on auxiliary pumping sub-systems so that the whole system remained neat and eliminated the dependence of energy consuming pumps or heaters which were typically applied in micro fuel cells.
文摘Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gold nanostructures and nanocarbons, have been extensively explored for near-infrared (NIR) light triggered PTT in the past decade, a variety of organic photothermal agents have also emerged in recent years, aiming at replacing their inorganic counterparts which usually are not biodegradable. In this mini-review, we will summarize several typical classes of recently developed NIR-absorbing organic PTT nano- agents, which include NIR dye-containing micelles, porphysomes, protein-based agents, conjugated polymers, and organic/inorganic nanocomposites. The development of imaging-guided PTT and combination therapy will be introduced as well. Finally, the perspectives and challenges in the future development of PTT will be discussed.
基金supported by the National Basic Research Program of China (2011CB933402)the National Natural Science Foundation of China (21371117, 31571024)
文摘More and more nanomaterials enter the environment along with their production, application and deposal. They may alter the biological effect of pollutants already existing in the real environment by different interactions. Therefore efforts should also be paid to investigate the combined toxicity of nanomaterials and pollutants. Herein, we studied the combined toxicity of oxi- dized multi-walled carbon nanotubes (O-MWCNTs) and zinc ions on ceils. It is found that cytotoxicity of the combined O-MWCNTs and zinc ions elevates significantly, compared with O-MWCNTs or zinc ions alone. This result comes from the assays of cell morphology, cell viability and proliferation, cell membrane integrity, mitochondrial membrane potential and cell apoptosis. Mechanism studies indicate that O-MWCNTs absorb zinc ions and form slight aggregation. These enhance remark- ably the cellular uptake of O-MWCNTs, and thus induce the death of cells by bringing in more zinc ions into cells. Our study indicates that the existence of nanomaterials could change the bioconsequence of other pollutants and emphasizes the im- portance of the combined toxicity research in the presence of nanomaterials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11072058 and 11272087)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201056)+2 种基金Shanghai Rising-Star Program(Grant No.11QH1400100)the Fundamental Research Funds for the Central Universities of ChinaSpecial Excellent Ph.D International Visit Program by Donghua University(Grant No.102552011003)
文摘This paper reports the structural effects of three-dimensional(3-D)angle-interlock woven composite(3DAWC)undergoing three-point bending cyclic loading from experimental and finite element analysis(FEA)approaches.In experiment,the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies.By the FEA approach,a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage.The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties.In addition,the stress distribution,fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z117)the Key Program of National Natural Science of China (No.50830201)the Ph.D. Teacher,s Research Project of Xuzhou Normal University
文摘In this article, the composite π-joint is investigated under bending loads. The "L" preform is the critical component regard- ing composite π-joint failure. The study is presented in the failure detection of a carbon fiber composite π-joint structure under bending loads using fiber Bragg grating (FBG) sensor. Firstly, based on the general f'mite element method (FEM) software, the 3-D finite element (FE) model of composite π-joint is established, and the failure process and every lamina failure load of composite π-joint are investigated by maximum stress criteria. Then, strain distributions along the length of FBG are extracted, and the reflection spectra of FBG are calculated according to the strain distribution. Finally, to verify the numerical results, a test scheme is performed and the experimental spectra of FBG are recorded. The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions, and the computational error of failure load is less than 6.4%. Furthermore, it also verifies the feasibility of the damage detection system.
文摘Since 2010, the export restraints of rare earth in China have been of great concern in the world. On March 13, 2012, the United States(U. S. ) , the European Union(EU) and Japan requested consultations with China with respect to China's export restraints of rare earth, tungsten and molybdenum (" Rare Earth Case"). Although the export restraints of rare earth are similar in essence to the disputed measures related to the export restraints on various raw materials in 2009, namely the competition between China and other WTO members, the specific forms of restraints have been developed. Combining to the WTO n.des and latest dispute setdements, this paper makes an in-depth study of the dispute triggered by rare earth and tries to propose some countermeasures in attempt to provide resolution for the Rare Earth Case and safeguard legitimate interests of China.
基金the National Natural Science Foundation of China(51503231 and 21374136)Guangdong Innovative and Entrepreneurial Research Team Program(2013S086)the Fundamental Research Funds for the Central Universities(17lgjc03 and 18lgpy04)。
文摘Herein,a facile and highly efficient synthetic method to prepare organic photothermal materials with high photo-stability and outstanding photothermal performance is reported.Through direct polymerization of commercial aromatic monomers in the presence of anhydrous aluminium chloride and dichloromethane,four kinds of conjugated microporous polymers(CMPs)were obtained.Detailed structural analysis confirmed that the resultant CMPs possessed abundant micropores with an extendedπ-conjugated skeleton.Under near-infrared(NIR)light irradiation(808 nm,1.0 W cm−2),all the CMPs showed fast heating-up behavior with their maximum temperatures higher than 150℃.Moreover,the efficiency of photothermal conversion(η)of the CMPs was found to increase linearly with the increase in the number of conjugated benzene rings within the monomer.Poly-TPE from tetraphenylethylene(TPE)and Poly-TP from o-terphenyl(TP)showed highηvalues of over 47%.Poly-TPE was additionally used as a photothermal filler to remotely and spatially control the shape recovery of thermal-sensitive shape memory polymers(SMPs),while its introduction(1 wt%)had little influence on the thermal and mechanical properties of the polymer matrixes.Owing to their excellent NIR photothermal performance as well as a one-step synthetic preparation,these CMPs may be promising photothermal materials for practical applications.