The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a...The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.展开更多
The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time ...The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.展开更多
We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has...We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.展开更多
Simple sequences repeat (SSR) molecular maker, as a new type of DNA molecular marker, the second generation based on the polymerase chain reaction (PCR), is valuable and of great potential as genetic markers for i...Simple sequences repeat (SSR) molecular maker, as a new type of DNA molecular marker, the second generation based on the polymerase chain reaction (PCR), is valuable and of great potential as genetic markers for its characteristics of abundant quantity, high polymorphic, reproducibility, specific site amplification, high occurring frequency, and co-dominant inheritance etc. This paper outlined its principles and characteristics, and introduced its application to variety identification, phylogenetic relationship analysis, genetic diversity analysis, DNA fingerprinting and linkage map constructing etc. in recent years in Citrus and its close relatives.展开更多
The food industry is evolving more towards new forms of organization much more complex and characterized by a greater degree of coordination, whether in the form of vertical integration of explicit or implicit contrac...The food industry is evolving more towards new forms of organization much more complex and characterized by a greater degree of coordination, whether in the form of vertical integration of explicit or implicit contracts between players of different levels of the industry. Therefore, the aim of this work is the search for mechanisms that can provide value to the production phase to better increase competitiveness of the sector. For the first time, in fact, discussion about food chains have as reference a recognized legal entity, which is the integrated projects of food chain as a result of actions of agricultural policy at community, national and regional levels. The methodology is related to two steps: the administration of questionnaires to the three companies participating in food chain partnerships that have proposed a draft of integrated design of food chain in response to the notice of the Apulia region for the submission of the integrated projects of the food chain; and a cluster analysis in the wine sector of the Italian regions. The results showed, thanks to Network Analysis, the importance for the chain development of relationships formed by market relations and cooperation relations (formal and informal) and the need for more actions for the enhancement of products by research and development activities.展开更多
Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept ...Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept of "isolation chromophore", "isolation group" and dendritic structure, a dendritic molecule D-NS and a dendronized hyperbranched polymer DHP-NS are prepared to investigate their structure-property relationship. For the small dendritic molecule D-NS, it exhibits a high d33 value of 140 pm/V.But this value can be easily dropped when the temperature is higher than 50 °C, which extremely limits its real application. After introducing D-NS into a dendronized hyperbranched polymer chains, the obtained DHP-NS also shows a high d33 value of101 pm/V, but much better stability than D-NS. Even when its thin film was heated to 120 °C, no obvious decay can be observed in the d33 value of DHP-NS. This work demonstrates an effective strategy to realize both large NLO effect and good stability simultaneously.展开更多
文摘The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.
基金Supported by the National Natural Science Foundation of China (20736002, 20706013)the Open Project of the State Key Laboratory of Chemical Engineering ECUST (SKL-ChE-09C02)the Natural Science Fund of the Education Department of Anhui Province (KJ2011B116)
文摘The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.
基金Funded by the Science and Technology Plan Project (No. 62065) of Guangzhou.
文摘We proposed a bilinearity constitutive curve model of fiber reinforced polymer(FRP) confined concrete which includes a parabola in the first stage and a straight line in the second stage. The FRP-confined concrete has powerful confinement status and weak confinement status leading to different equations of parabola. We analyzed the impacts of factors such as confinement ratio and restrain stiffness on confined concrete compressive strength,ultimate strain and other control parameters through finite element analysis. The results show that the confinement ratio determines the confinement status,and the increase of the confinement ratio has a limited capacity to increase the compressive strength. The deformation of confined concrete is influenced by restrain stiffness. The stronger the restrain stiffness is,the less the lateral deformation is and the greater ultimate axial strain will be. The consideration of equivalent section coefficient kse is needed in the non-circular section confined concrete. We analyzed the results and proposed boundary values of strong and weak confinement styles,a peak/inflection point stress and strain model,and a compressive strength and ultimate strain model.
文摘Simple sequences repeat (SSR) molecular maker, as a new type of DNA molecular marker, the second generation based on the polymerase chain reaction (PCR), is valuable and of great potential as genetic markers for its characteristics of abundant quantity, high polymorphic, reproducibility, specific site amplification, high occurring frequency, and co-dominant inheritance etc. This paper outlined its principles and characteristics, and introduced its application to variety identification, phylogenetic relationship analysis, genetic diversity analysis, DNA fingerprinting and linkage map constructing etc. in recent years in Citrus and its close relatives.
文摘The food industry is evolving more towards new forms of organization much more complex and characterized by a greater degree of coordination, whether in the form of vertical integration of explicit or implicit contracts between players of different levels of the industry. Therefore, the aim of this work is the search for mechanisms that can provide value to the production phase to better increase competitiveness of the sector. For the first time, in fact, discussion about food chains have as reference a recognized legal entity, which is the integrated projects of food chain as a result of actions of agricultural policy at community, national and regional levels. The methodology is related to two steps: the administration of questionnaires to the three companies participating in food chain partnerships that have proposed a draft of integrated design of food chain in response to the notice of the Apulia region for the submission of the integrated projects of the food chain; and a cluster analysis in the wine sector of the Italian regions. The results showed, thanks to Network Analysis, the importance for the chain development of relationships formed by market relations and cooperation relations (formal and informal) and the need for more actions for the enhancement of products by research and development activities.
基金supported by the Startup Research Fund of Zhengzhou University(1411320006)the National Natural Science Foundation of China(21325416,21274133)
文摘Large nonlinear optical(NLO) coefficient and good stability, two essential factors to evaluate second-order NLO materials, are difficult to be achieved in one molecule simultaneously. Herein, by utilizing the concept of "isolation chromophore", "isolation group" and dendritic structure, a dendritic molecule D-NS and a dendronized hyperbranched polymer DHP-NS are prepared to investigate their structure-property relationship. For the small dendritic molecule D-NS, it exhibits a high d33 value of 140 pm/V.But this value can be easily dropped when the temperature is higher than 50 °C, which extremely limits its real application. After introducing D-NS into a dendronized hyperbranched polymer chains, the obtained DHP-NS also shows a high d33 value of101 pm/V, but much better stability than D-NS. Even when its thin film was heated to 120 °C, no obvious decay can be observed in the d33 value of DHP-NS. This work demonstrates an effective strategy to realize both large NLO effect and good stability simultaneously.