ZnO nanorods, with the c-axis orientation used for transparent conductors, solar cells, sensors especially the functionalized ZnO nanorods with some kinds of enzymes have been used for biosensor. In this work, we desc...ZnO nanorods, with the c-axis orientation used for transparent conductors, solar cells, sensors especially the functionalized ZnO nanorods with some kinds of enzymes have been used for biosensor. In this work, we describe the process immobilization of galactose oxidase on ZnO nanorods surface with glutaraldehyde as a cross-linker molecule to make the working electrode in electrochemical biosensor. ZnO nanorods were grown on FTO (Fluorine-doped tin oxide) substrate by solution method at low temperature. The crystalline phase and orientation of ZnO nanorods were identified using X-ray diffraction. The efficiency of the immobilization was calculated by Braford method showed that about 36% enzyme content was immobilized on ZnO nanorods surface. The working electrode based on the immobilized ZnO nanorods was tested in galactose solution by CV (cyclic voltammetry) method indicated the value of current intensity is about 0.14 μA. These results clearly demonstrate the potential of galactose sensor based on ZnO nanorod.展开更多
The evolution of the surface oxide film along the depth direction of typical aluminum alloy under mediumtemperature brazing was investigated by means of X-ray photoelectron spectroscopy(XPS). For the alloy with Mg con...The evolution of the surface oxide film along the depth direction of typical aluminum alloy under mediumtemperature brazing was investigated by means of X-ray photoelectron spectroscopy(XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the enrichment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloying elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during mediumtemperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.展开更多
We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes w...We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes with HCI 37%, for 190 h. X-ray photoelectron spectroscopy and optical images taken on treated samples show the formation of a CuCIJCu2CI2 patina of about 300 m Laser ablation reduces in both medium the patina thickness at few microns without changing the chemical composition of bronze. X-ray analysis show the most effectiveness of ablation procedure in marine water where its only effect is the patina reduction without introducing changes in bronze chemical composition. Ablation in air, instead, reduces the patina but favors the adsorption of air oxygen and carbon on sample surfaces and a progressive "carbonization" of samples.展开更多
The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical process...The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical processing. In this framework, compression samples which were deformed above Tnr and then intercritically annealed were held isothermally for different durations at temperatures below bainite transformation start temperature. Microstructure of samples were characterized by optical and electron microscopy, XRD (X-ray diffraction) and M6ssbauer spectroscopy. The results indicated that due to low-silicon content of the present steel, the incomplete bainite reaction phenomena was not observed and, hence, the maximum carbon enrichment of residual austenite was achieved in the samples which held for short durations. It was also shown that the maximum carbon enrichment and volume fraction of residual austenite were achieved at intermediate bainite hold temperature of 450 ℃ as the result of competing phenomena, such as microstructural refinement, dislocation density, carbide precipitation and growth.展开更多
Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studie...Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studied by electron probe microanalysis and X-ray diffraction. The micro-hardness and wear resistance of coating were investigated in comparison with those of the substrate. It is found that the coating layer is composed of a-Al cellular due to rapid solidification. Formation mechanism of the coating is due to the obstruction of diffusion by in-situ formed Mg2Si in interracial layer. The coating exhibits higher hardness compared to that of the Mg substrate. As result of its high hardness, the wear resistance of the coating layer is about ten times that of the substrate. The droplet spraying process demonstrates that the magnesium surface can be strengthened by using the existing Al-Si alloys.展开更多
By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction met...By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.展开更多
PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern...PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.展开更多
文摘ZnO nanorods, with the c-axis orientation used for transparent conductors, solar cells, sensors especially the functionalized ZnO nanorods with some kinds of enzymes have been used for biosensor. In this work, we describe the process immobilization of galactose oxidase on ZnO nanorods surface with glutaraldehyde as a cross-linker molecule to make the working electrode in electrochemical biosensor. ZnO nanorods were grown on FTO (Fluorine-doped tin oxide) substrate by solution method at low temperature. The crystalline phase and orientation of ZnO nanorods were identified using X-ray diffraction. The efficiency of the immobilization was calculated by Braford method showed that about 36% enzyme content was immobilized on ZnO nanorods surface. The working electrode based on the immobilized ZnO nanorods was tested in galactose solution by CV (cyclic voltammetry) method indicated the value of current intensity is about 0.14 μA. These results clearly demonstrate the potential of galactose sensor based on ZnO nanorod.
基金Supported by National Natural Science Foundation of China(No.51005163 and No.51275351)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘The evolution of the surface oxide film along the depth direction of typical aluminum alloy under mediumtemperature brazing was investigated by means of X-ray photoelectron spectroscopy(XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the enrichment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloying elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during mediumtemperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3.
文摘We present the results of laser ablations cleanness process on bronzes covered by a chloride patina in two different media: marine water and air. The bronze chloride disease was obtained treating commercial bronzes with HCI 37%, for 190 h. X-ray photoelectron spectroscopy and optical images taken on treated samples show the formation of a CuCIJCu2CI2 patina of about 300 m Laser ablation reduces in both medium the patina thickness at few microns without changing the chemical composition of bronze. X-ray analysis show the most effectiveness of ablation procedure in marine water where its only effect is the patina reduction without introducing changes in bronze chemical composition. Ablation in air, instead, reduces the patina but favors the adsorption of air oxygen and carbon on sample surfaces and a progressive "carbonization" of samples.
文摘The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical processing. In this framework, compression samples which were deformed above Tnr and then intercritically annealed were held isothermally for different durations at temperatures below bainite transformation start temperature. Microstructure of samples were characterized by optical and electron microscopy, XRD (X-ray diffraction) and M6ssbauer spectroscopy. The results indicated that due to low-silicon content of the present steel, the incomplete bainite reaction phenomena was not observed and, hence, the maximum carbon enrichment of residual austenite was achieved in the samples which held for short durations. It was also shown that the maximum carbon enrichment and volume fraction of residual austenite were achieved at intermediate bainite hold temperature of 450 ℃ as the result of competing phenomena, such as microstructural refinement, dislocation density, carbide precipitation and growth.
基金Project(KZJ-48)supported by the Science and Technology Development Program of Qingdao,ChinaProject(51208288)supported by the National Natural Science Foundation of ChinaProject(BS2011CL032)supported by the Research Award Fund for Outstanding Youngand Middle-aged Scientists of Shandong Province,China
文摘Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studied by electron probe microanalysis and X-ray diffraction. The micro-hardness and wear resistance of coating were investigated in comparison with those of the substrate. It is found that the coating layer is composed of a-Al cellular due to rapid solidification. Formation mechanism of the coating is due to the obstruction of diffusion by in-situ formed Mg2Si in interracial layer. The coating exhibits higher hardness compared to that of the Mg substrate. As result of its high hardness, the wear resistance of the coating layer is about ten times that of the substrate. The droplet spraying process demonstrates that the magnesium surface can be strengthened by using the existing Al-Si alloys.
基金financially supported by the National Science Foundation of China (No. 21376229)the Science and Technology Development Plan of Shanxi Province (No. 20130321035-02)
文摘By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.
文摘PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.