Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutatio...Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. Ar~ adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.展开更多
文摘Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. Ar~ adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.