1994年9月,日本的PIONEER(先锋)公司宣布将推出一种尺寸与CD—ROM相同、容量却要大8倍的新型光存储介质,并得到了许多厂商的支持。一直执光存储之牛耳的S0NY和PHILIPS公司不甘心失去主导地位,3个月后即抢先公布了自己的MMCD(Mutimed...1994年9月,日本的PIONEER(先锋)公司宣布将推出一种尺寸与CD—ROM相同、容量却要大8倍的新型光存储介质,并得到了许多厂商的支持。一直执光存储之牛耳的S0NY和PHILIPS公司不甘心失去主导地位,3个月后即抢先公布了自己的MMCD(Mutimedia CD)标准,单面容量高达3.7GB。被抢了先机的另方阵营也毫不示弱,于1995年1月正式发表SDCD(Super Density CD)标准,双面容量达到5GB,支持这一标准的厂商阵容很强大,包括东芝、三菱、松下、日立、JVC等制造商及时代华纳、环球影视等电影公司。展开更多
Hyperspectral remote sensing makes it possible to non-destructively monitor leaf chlorophyll content (LCC). This study characterized the geometric patterns of the first derivative reflectance spectra in the red edge...Hyperspectral remote sensing makes it possible to non-destructively monitor leaf chlorophyll content (LCC). This study characterized the geometric patterns of the first derivative reflectance spectra in the red edge region of rapeseed (Brassica napus L.) and wheat (Triticum aestivum L.) crops. The ratio of the red edge area less than 718 nm to the entire red edge area was negatively correlated with LCC. This finding allowed the construction of a new red edge param- eter, defined as red edge symmetry (RES). Compared to the commonly used red edge parameters (red edge position, red edge amplitude, and red edge area), RES was a better predictor of LCC. Furthermore, RES was easily calculated using the reflectance of red edge boundary wavebands at 675 and 755 nm (R675 and R755) and reflectance of red edge center wavelength at 718 nm (R718), with the equation RES = (R71s - R675)/(R755 - R675). In addition, RES was simulated effectively with wide wavebands from the airborne hyperspectral sensor AVIRIS and satellite hyperspectral sensor Hyperion. The close relationships between the simulated RES and LCC indicated a high feasibility of estimating LCC with simulated RES from AVIRIS and Hyperion data. This made RES readily applicable to common airborne and satellite hyperspectral data derived from AVIRIS and Hyperion sources, as well as ground-based spectral reflectance data.展开更多
Nano-hole patterned sapphire substrates (NHPSSs) were successfully prepared using a low-cost and high-efficiency approach, which is the laser interference lithography (LIL) combined with reactive ion etching (RIE...Nano-hole patterned sapphire substrates (NHPSSs) were successfully prepared using a low-cost and high-efficiency approach, which is the laser interference lithography (LIL) combined with reactive ion etching (RIE) and inductively coupled plasma (ICP) techniques. Gallium nitride (GaN)-based light emitting diode (LED) structure was grown on NHPSS by metal organic chemical vapor deposition (MOCVD). Photoluminescence (PL) measurement was conducted to compare the luminescence efficiency of the GaN-based LED structure grown on NHPSS ('NHPSS-LED) and that on unpatterned sapphire substrates (UPSS-LED). Electroluminescence (EL) measurement shows that the output power of NHPSS-LED is 2.3 times as high as that of UPSS-LED with an injection current of 150 mA. Both PL and EL results imply that NHPSS has an advantage in improving the crystalline quality of Gab/epilayer and light extraction efficiency of LEDs at the same time.展开更多
文摘1994年9月,日本的PIONEER(先锋)公司宣布将推出一种尺寸与CD—ROM相同、容量却要大8倍的新型光存储介质,并得到了许多厂商的支持。一直执光存储之牛耳的S0NY和PHILIPS公司不甘心失去主导地位,3个月后即抢先公布了自己的MMCD(Mutimedia CD)标准,单面容量高达3.7GB。被抢了先机的另方阵营也毫不示弱,于1995年1月正式发表SDCD(Super Density CD)标准,双面容量达到5GB,支持这一标准的厂商阵容很强大,包括东芝、三菱、松下、日立、JVC等制造商及时代华纳、环球影视等电影公司。
基金Supported by the Program for New Century Excellent Talents in University of China(No.NCET-08-0797)the National Natural Science Foundation of China(No.30871448)+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK2008330)the Program for the Creative Scholars of Jiangsu Province,China(No.BK20081479)
文摘Hyperspectral remote sensing makes it possible to non-destructively monitor leaf chlorophyll content (LCC). This study characterized the geometric patterns of the first derivative reflectance spectra in the red edge region of rapeseed (Brassica napus L.) and wheat (Triticum aestivum L.) crops. The ratio of the red edge area less than 718 nm to the entire red edge area was negatively correlated with LCC. This finding allowed the construction of a new red edge param- eter, defined as red edge symmetry (RES). Compared to the commonly used red edge parameters (red edge position, red edge amplitude, and red edge area), RES was a better predictor of LCC. Furthermore, RES was easily calculated using the reflectance of red edge boundary wavebands at 675 and 755 nm (R675 and R755) and reflectance of red edge center wavelength at 718 nm (R718), with the equation RES = (R71s - R675)/(R755 - R675). In addition, RES was simulated effectively with wide wavebands from the airborne hyperspectral sensor AVIRIS and satellite hyperspectral sensor Hyperion. The close relationships between the simulated RES and LCC indicated a high feasibility of estimating LCC with simulated RES from AVIRIS and Hyperion data. This made RES readily applicable to common airborne and satellite hyperspectral data derived from AVIRIS and Hyperion sources, as well as ground-based spectral reflectance data.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China(No.2012YQ17000406)the Foshan-CAS Cooperated Projects(No.2012A01)
文摘Nano-hole patterned sapphire substrates (NHPSSs) were successfully prepared using a low-cost and high-efficiency approach, which is the laser interference lithography (LIL) combined with reactive ion etching (RIE) and inductively coupled plasma (ICP) techniques. Gallium nitride (GaN)-based light emitting diode (LED) structure was grown on NHPSS by metal organic chemical vapor deposition (MOCVD). Photoluminescence (PL) measurement was conducted to compare the luminescence efficiency of the GaN-based LED structure grown on NHPSS ('NHPSS-LED) and that on unpatterned sapphire substrates (UPSS-LED). Electroluminescence (EL) measurement shows that the output power of NHPSS-LED is 2.3 times as high as that of UPSS-LED with an injection current of 150 mA. Both PL and EL results imply that NHPSS has an advantage in improving the crystalline quality of Gab/epilayer and light extraction efficiency of LEDs at the same time.