New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grou...New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.展开更多
Electronic structures of complex mineral jamesonite were studied using density functional theory method together with their flotation behavior. The flotation behavior ofjamesonite is similar to that of stibnite, indic...Electronic structures of complex mineral jamesonite were studied using density functional theory method together with their flotation behavior. The flotation behavior ofjamesonite is similar to that of stibnite, indicating good floatability at pH below 6 and easy depression with NaOH, especially with lime. In weak alkaline condition, the flotation behavior ofjamesonite is close to that of galena. The coordination structure of Pb for jamesonite is more complex than that for galena. Sb in jamesonite possesses two coordinated modes, whereas Sb of stibnite is only 3-coordinated. Pb in galena is more active than that in jamesonite. Sb (3-coordination) in jamesonite is inactive, in contrast with that in stibnite. However, 4-coordination Sb in jamesonite is more active than 3-coordination Sb. HOMO orbitals of jamesonite and stibnite contain metal atoms, which contribute to the formation of adsorption configuration of CaOH^+ when there is lime; therefore, jamesonite and stibnite are easily depressed by lime.展开更多
The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared w...The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared with the sheets rolled at room temperature(RT) showing copper texture,the CT-rolled sheets exhibited brass texture which indicated that cross-slip was suppressed at CT,and both the ultimate tensile strength and yield strength of the sheets were increased.Due to the in-situ recrystallization mechanism,recrystallization textures in as-annealed CT-rolled sheets were randomly distributed,while the as-annealed RT-rolled sheets mainly contained cube texture.Microstructures of the rolled and annealed sheets were observed using optical microscopy and electronic back-scatter diffraction.The results show that the dynamic recovery was suppressed during CT-rolling and resulted in higher deformation energy storage.Therefore,the recrystallization of CT-rolled sheets could start at a lower temperature than that of RT-rolled sheet at the same reduction.展开更多
Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were...Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.展开更多
The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved ...The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved polyethylene catalyst.The effects of catalyst structure on kinetic behavior were examined.The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays(EDAX),and morphologies of catalyst particles and polymer products were examined by scanning electron microscope(SEM).Hydrogen response and copolymerization performance were investigated and compared with the two catalysts.The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented.The improved polyethylene catalyst showed higher activity,better hydrogen response and copolymerization performance.展开更多
The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositio...The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.展开更多
Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe...Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.展开更多
An equation of state (EOS) for square-well chain fluids with variable range (SWCF-VR) developed based on statistical mechanics for chemical association was employed for the calculations of pressure-volume-temperat...An equation of state (EOS) for square-well chain fluids with variable range (SWCF-VR) developed based on statistical mechanics for chemical association was employed for the calculations of pressure-volume-temperature (pVT) and phase equilibrium of pure ionic liquids (ILs) and their mixtures. The new molecular parameters for 23 ILs were obtained by fitting their experimental density data over a wide temperature and pressure ranges. The mo- lecular parameters of ILs composed of homologous organic cation and an identical anion such as [Cxmim][NTf2] are good linear with respect to their molecular weight, indicating that the molecular parameters of homologous substances, subsequently p VT and vapor-liquid equilibria vapor-liquid equilibria (VLE) can be predicted using the generalized parameter when no experimental data were available. The new set of parameters were satisfactorily used for calculations of the property of solvent and ILs mixture and the solubility of gas in various ILs at low pressure only using one temperature-independent binary interaction parameter.展开更多
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term beh...Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.展开更多
Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and ho...Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.展开更多
The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the...The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.展开更多
In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) ...In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.展开更多
Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulli...Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).展开更多
The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated no...The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated non-dynamic recrystallized(un-DRXed) grains disappear after adding Nd, and uniformly distributed dynamic recrystallized grains with a grain size of 1.68 μm were obtained in the alloy. In addition, numerous nano-Mg5(Gd,Nd)particles were found to precipitate dynamically in the Mg-9Gd-2Nd-0.5Zr alloy, which gave rise to the dynamic recrystallization process via providing nucleation energy through hindering the release of deformation energy and promoting an increase in the strength through the Orowan strengthening mechanism. Moreover, the dynamically recrystallized(DRXed) grains have a weak texture, which plays a significant role in improving the ductility. Therefore,the Nd addition favors the improvement of strength and elongation for the as-extruded Mg-9Gd-0.5Zr alloy,simultaneously.展开更多
CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of g...CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of greenhouse gases and the emerging commercial significance of CBM. Reservoir-simulation technology,as a useful tool of reservoir development, has the capability to provide us with an economic means to solve complex reservoir-engineering problems with efficiency. The pore structure of coal is highly heterogeneous, and the heterogeneity of the pores depends on the coal type and rank.展开更多
Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused ...Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.展开更多
The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 alumin...The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).展开更多
Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high t...Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.展开更多
Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball...Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball-milled Si/Ni particles in the electrolyte on the silicon content, structure, microhardness and corrosion behaviors of the coatings were investigated. Scanning electron microscopy and X-ray diffractometry were used for structural characterization. Also, the microhardness and corrosion behaviors of the deposited coatings were evaluated. According to the results, the Si level reaches about 10 wt.% in the coating, which is a significant content of Si incorporation for electrodeposition. It was also found that the crystallite size of the coatings was progressively decreased and the hardness was increased, by increasing the content of Si. Typically, the crystallite size and microhardness of the Ni-10 wt.%Si coating were 0.39 and 2.1 times those of the pure Ni coating, respectively. Also, the results showed that there is an optimal content of Si to meet the best acidic corrosion resistance of the coatings.展开更多
文摘New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.
基金Project(NCET-11-0925)supported by the New Century Excellent Talents in University,ChinaProject(51164001)supported by the National Natural Science Foundation of ChinaProject supported by Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of complex mineral jamesonite were studied using density functional theory method together with their flotation behavior. The flotation behavior ofjamesonite is similar to that of stibnite, indicating good floatability at pH below 6 and easy depression with NaOH, especially with lime. In weak alkaline condition, the flotation behavior ofjamesonite is close to that of galena. The coordination structure of Pb for jamesonite is more complex than that for galena. Sb in jamesonite possesses two coordinated modes, whereas Sb of stibnite is only 3-coordinated. Pb in galena is more active than that in jamesonite. Sb (3-coordination) in jamesonite is inactive, in contrast with that in stibnite. However, 4-coordination Sb in jamesonite is more active than 3-coordination Sb. HOMO orbitals of jamesonite and stibnite contain metal atoms, which contribute to the formation of adsorption configuration of CaOH^+ when there is lime; therefore, jamesonite and stibnite are easily depressed by lime.
基金Project(51271046)supported by the National Natural Science Foundation of China
文摘The texture evolution and mechanical properties of Cu-Ag alloys subjected to severe plastic deformation at cryogenic temperature(CT) were investigated and the sequent annealing behaviors were also studied.Compared with the sheets rolled at room temperature(RT) showing copper texture,the CT-rolled sheets exhibited brass texture which indicated that cross-slip was suppressed at CT,and both the ultimate tensile strength and yield strength of the sheets were increased.Due to the in-situ recrystallization mechanism,recrystallization textures in as-annealed CT-rolled sheets were randomly distributed,while the as-annealed RT-rolled sheets mainly contained cube texture.Microstructures of the rolled and annealed sheets were observed using optical microscopy and electronic back-scatter diffraction.The results show that the dynamic recovery was suppressed during CT-rolling and resulted in higher deformation energy storage.Therefore,the recrystallization of CT-rolled sheets could start at a lower temperature than that of RT-rolled sheet at the same reduction.
基金Project(2012CB619101)supported by the National Basic Research Program of China
文摘Porous titanium has been shown to exhibit desirable properties as biomedical materials. In view of the load-bearing situation, the mechanical properties and pore structure deformation behaviour of porous titanium were studied. Porous titanium with porosities varying from 36%-66% and average pore size of 230 μm was fabricated by powder sintering. Microstructural features were characterized using scanning electron microscopy. Uniaxial compression tests were used to probe the mechanical response in terms of elastic modulus and compressive strength. The mechanical properties of porous titanium were found to be close to the those of human bone, with stiffness values ranging from 1.86 to 14.7 GPa and compressive strength values of 85.16-461.94 MPa. The relationships between mechanical properties and relative densities were established, and the increase in relative density showed significant effects on mechanical properties and deformations of porous titanium. In a lower relative density, the microscopic deformation mechanism of porous titanium was yielding, bending and buckling of cell walls, while the deformation of yielding and bending of cell walls was observed in the porous titanium with higher relative density.
文摘The study concerns the use of MgCl2-supported high-activity Ziegler-Natta catalysts for the polymerization of ethylene.In particular,two types of catalysts were investigated,which were N-catalyst(BRICI)and improved polyethylene catalyst.The effects of catalyst structure on kinetic behavior were examined.The distribution of active centers in these catalysts was investigated by energy dispersive analysis by X-rays(EDAX),and morphologies of catalyst particles and polymer products were examined by scanning electron microscope(SEM).Hydrogen response and copolymerization performance were investigated and compared with the two catalysts.The results were correlated with the kinetic behavior of the two catalysts and appropriate models for polymer particle growth were presented.The improved polyethylene catalyst showed higher activity,better hydrogen response and copolymerization performance.
基金the financial support from the National Natual Science Foundation of China(No.51375491)the Natural Science Foundation of Chongqing(Project No.2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.
基金Project supported by the Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.
基金Supported by the National Natural Science Foundation of China (20876041, 20736002), the National Basic Research Program of China (2009CB219902), Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0721) and the 111 Project of China (B08021).
文摘An equation of state (EOS) for square-well chain fluids with variable range (SWCF-VR) developed based on statistical mechanics for chemical association was employed for the calculations of pressure-volume-temperature (pVT) and phase equilibrium of pure ionic liquids (ILs) and their mixtures. The new molecular parameters for 23 ILs were obtained by fitting their experimental density data over a wide temperature and pressure ranges. The mo- lecular parameters of ILs composed of homologous organic cation and an identical anion such as [Cxmim][NTf2] are good linear with respect to their molecular weight, indicating that the molecular parameters of homologous substances, subsequently p VT and vapor-liquid equilibria vapor-liquid equilibria (VLE) can be predicted using the generalized parameter when no experimental data were available. The new set of parameters were satisfactorily used for calculations of the property of solvent and ILs mixture and the solubility of gas in various ILs at low pressure only using one temperature-independent binary interaction parameter.
基金Project(50278097) supported by the National Natural Science Foundation of China
文摘Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.
基金Supported by the National Natural Science Foundation of China (50706007 50976025) the National Key Program of Basic Research in China (2010CB732206)+1 种基金 the Foundation of Excellent Young Scholar of Southeast University (4003001039) the Collaboration Project of China and British (2010DFA61960)
文摘Flow behaviors of four kinds of granular particles(i.e. sphere,ellipsoid,hexahedron and binary mixture of sphere and hexahedron) in rectangular hoppers were experimentally studied. The effects of granular shape and hopper structure on flow pattern,discharge fraction,mean particle residence time and tracer concentration distribu-tion were tested based on the visual observation and particle tracer technique. The results show that particle shape affects significantly the flow pattern. The flow patterns of sphere,ellipsoid and binary mixture are all parabolic shape,and the flow pattern shows no significant difference with the change of wedge angle. The flowing zone be-comes more sharp-angled with the increasing outlet size. The flow pattern of hexahedron is featured with straight lines. The discharge rates are in increasing order from hexahedron,sphere,binary mixture to ellipsoid. The dis-charge rate also increases with the wedge angle and outlet size. The mean particle residence time becomes shorter when the outlet size increases. The difference of mean particle residence time between the maximum and minimum values decreases as the wedge angle increases. The residence time of hexahedron is the shortest. The tracer concen-tration distribution of hexahedron at any height is more uniform than that of binary mixture. The tracer concentra-tion of sphere in the middle is lower than that near the wall,and the contrary tendency is found for ellipsoid particles.
基金Supported by the National Natural Science Foundation of China(21376116)A PAPD Project of Jiangsu Higher Education Institution
文摘The flow behavior of pressure-driven water infiltration through graphene-based slit nanopores has been studied by molecular simulation.The simulated flow rate is close to the experimental values,which demonstrates the reasonability of simulation results.Water molecules can spontaneously infiltrate into the nanopores,but an external driving force is generally required to pass through the whole pores.The exit of nanopore has a large obstruction on the water effusion.The flow velocity within the graphene nanochannels does not display monotonous dependence upon the pore width,indicating that the flow is related to the microscopic structures of water confined in the nanopores.Extensive structures of confined water are characterized in order to understand the flow behavior.This simulation improves the understanding of graphene-based nanofluidics,which helps in developing a new type of membrane separation technique.
基金Project(51004056)supported by the National Natural Science Foundation of China
文摘In order to study the anodic behavior and microstmctures of A1/Pb-Ag-Co anode during zinc electrowinning, by means of potentiodynamic investigations, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses, the mechanism of the anodic processes playing on the surface of A1/Pb-0.8%Ag and A1/Pb-0.75%Ag-0.03%Co anodes prepared by electro-deposition from methyl sulfonic acid bath for zinc electrowinning from model sulphate electrolytes have been measured. On the basis of the cyclic voltammograms obtained, information about the corrosion rate of the composite in PbO2 region has been concluded. The microstructures were also observed by means of SEM and XRD which showed Pb-0.75%Ag-0.03%Co alloy composite coating has uniform and chaotic orientation tetragonal symmetry crystallites of PbSO4, but Pb-0.8%Ag alloy composite coating has well-organized orientation crystallites of PbSO4 concentrated in the certain zones after 24 h of anodic polarization. It is important that Al/Pb-0.75%Ag-0.03%Co anode oxide film consists of non-conductive dense MnO2 and PbSO4 and a, fl-PbO2 penetrated into which, in fact, are the active centers of the oxygen evolution after 24 h of anodic polarization.
基金Project(07JJ3102) supported by Hunan Provincial Natural Science Foundation,ChinaProject(k0902132-11) supported by Changsha Municipal Science and Technology,China
文摘Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).
基金supported by the Natural Science Foundation of Shanxi Province, China (Nos. 20210302123135, 20210302123163, 201901D211096, 201901D111272)Youth Program of National Natural Science Foundation of China (No. 51901153)+1 种基金Science and Technology Major Project of Shanxi Province, China (Nos. 20191102008, 20191102007, 20191102004)Shanxi Province Scientific Facilities and Instruments Shared Service Platform of Magnesium-based Materials Electric Impulse Aided Forming, China (No. 201805D141005)。
文摘The effect of Nd addition on the microstructure and mechanical properties of as-extruded Mg-9Gd-0.5Zr(wt.%) alloy was investigated. The Mg-9Gd-0.5Zr and Mg-9Gd-2Nd-0.5Zr alloys were extruded at 673 K. The elongated non-dynamic recrystallized(un-DRXed) grains disappear after adding Nd, and uniformly distributed dynamic recrystallized grains with a grain size of 1.68 μm were obtained in the alloy. In addition, numerous nano-Mg5(Gd,Nd)particles were found to precipitate dynamically in the Mg-9Gd-2Nd-0.5Zr alloy, which gave rise to the dynamic recrystallization process via providing nucleation energy through hindering the release of deformation energy and promoting an increase in the strength through the Orowan strengthening mechanism. Moreover, the dynamically recrystallized(DRXed) grains have a weak texture, which plays a significant role in improving the ductility. Therefore,the Nd addition favors the improvement of strength and elongation for the as-extruded Mg-9Gd-0.5Zr alloy,simultaneously.
文摘CBM has been recognized as a significant natural gas resource for a long time. Recently, CO_2 sequestration in coalbeds for ECBM has been attracting growing attention because of greater concerns about the effects of greenhouse gases and the emerging commercial significance of CBM. Reservoir-simulation technology,as a useful tool of reservoir development, has the capability to provide us with an economic means to solve complex reservoir-engineering problems with efficiency. The pore structure of coal is highly heterogeneous, and the heterogeneity of the pores depends on the coal type and rank.
基金Supported by the National Natural Science Foundation of China(2160060639)the Natural Science Foundation of Jiangsu Province(BK20160984)the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry(ZX15511310002)
文摘Membrane fouling is the key problem that occurs in membrane process for water treatment. However, how membrane microstructure influences the fouling behavior is still not clear. In this study, fouling behavior caused by dextran was deeply and systematically investigated by employing four poly(vinylidene fluoride) (PVDF) membranes with different pore sizes, ranging from 24 to 94 nm. The extent of fouling by dextran was accurately characterized by pore reduction, flux decline, and the change of critical flux. The result shows that membrane with the smallest pore size of 24 nm experienced the smallest fouling rate and the lowest fouling extent. As the membrane pore size increased, the critical flux ranges were 105-114, 63-73, 38-44 and 34- 43 L. m 2. h t, respectively. The critical flux and fouling resistances indicated that the fouling propensity in- creases with the increase of membrane pore size. Two pilot membrane modules with mean pore size of 25 nm and 60 nm were applied in membrane filtration of surface water treatment. The results showed that serious ir- reversible membrane fouling occurred on the membrane with pore size of 60 nm at the permeate flux of 40.5 L.m 2.h 1. On the other hand, membrane with pore size of 25 nm exhibited much better anti-fouling per- formance when permeate flux was set to 40.5, 48 and 60 L-m 2-h- 1.
文摘The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).
文摘Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+ 0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.
文摘Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball-milled Si/Ni particles in the electrolyte on the silicon content, structure, microhardness and corrosion behaviors of the coatings were investigated. Scanning electron microscopy and X-ray diffractometry were used for structural characterization. Also, the microhardness and corrosion behaviors of the deposited coatings were evaluated. According to the results, the Si level reaches about 10 wt.% in the coating, which is a significant content of Si incorporation for electrodeposition. It was also found that the crystallite size of the coatings was progressively decreased and the hardness was increased, by increasing the content of Si. Typically, the crystallite size and microhardness of the Ni-10 wt.%Si coating were 0.39 and 2.1 times those of the pure Ni coating, respectively. Also, the results showed that there is an optimal content of Si to meet the best acidic corrosion resistance of the coatings.