A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of...A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.展开更多
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total...In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.展开更多
Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great conc...Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.展开更多
The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix...The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix,which can largely enhance the compressive yield strength at RT and 100℃.However,with increasing temperature,hardening effect via pre-torsion gradually decreases.When the compressive temperature reaches 300℃,pre-torsion reduces the compressive yield strength.Moreover,initial dislocations and twins via torsion help to refine the sub-structure and accelerate the continuous dynamic recrystallization during compression at 200℃.Thus,twisted sample exhibits more rapid flow softening behavior than the as-extruded sample at 200℃.When compressed at 300℃,the twins and dislocations via torsion were largely eliminated during the holding time,and the discontinuous dynamic recrystallization was enhanced.It is found that the compression curves of twisted sample and as-extruded sample tended to be coincident at 300℃.Related mechanisms were discussed in detail.展开更多
Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite havi...Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.展开更多
ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the deco...ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the decomposition process, it can accompany abundant heat and huge pressure to increase the possibility of thermal runaway and hazard, causing unacceptable thermal explosion or fire accidents. To develop an inherently safer process for ADVN, the thermal stability parameters of ADVN were obtained to investigate thermal decomposition characteristics using a DSC (differential scanning calorimetry) and TG (thermogravimetry). We used various kinetic models to completely depict the kinetic behavior and determine the thermal safety parameters for ADVN. The green thermal analysis approach could be used to substitute for complicated procedures and large-scale experiments of traditional thermal analysis methods, avoiding environmental pollution and energy depletion.展开更多
We present the results of theoretical and experimental studies of flow processes of extended axisymmetric cavitators during motion near a free surface taking into account a considerable effect of fluid weightiness. Th...We present the results of theoretical and experimental studies of flow processes of extended axisymmetric cavitators during motion near a free surface taking into account a considerable effect of fluid weightiness. The main objective of work is to study ways of reduction of fluid weightiness effect using lift at cavitator and other body (hull) elements within a cavity, in order to apply this way of drag reduction for a range of considerably lower motion speeds.展开更多
The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect...The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.展开更多
In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the ...In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the yield behaviors of the NWs.The results have shown that the yield behavior of the smaller diameter NW is more sensitive to the presence of vacancies,and the dispersion of the measured mechanical properties for the small scale NW is larger than that for the large scale NW.Present results have also shown that vacancies escape from the bulk to the free surfaces as a result of high stress applied at the small scale systems similar to the dislocation starvation phenomenon observed in the compression test of nano-pillars,and dislocation nucleation induced by surface defect occurs after the vacancy reaches free surface leading to lower yield strength.Moreover,the strong surface vacancy interactions at the nanoscale level are also investigated.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
基金Supported by the Graduate Innovation Foundation of Shanxi Province of China(2015BY44)
文摘A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.
文摘In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.
基金Supported by EPSRC/FSC (EP/I502033/1) and Leverhulme Trust (ECF/40348), UK
文摘Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.
基金the National Natural Science Foundation of China(No.51601154)Southwest University Undergraduate Innovation Project(No.zsm2021026).
文摘The influence of free-end torsion on compressive behavior of an extruded AZ31 rod at various temperatures was studied.Pre-torsion generates a high density of dislocations and a large number of{1012}twins in the matrix,which can largely enhance the compressive yield strength at RT and 100℃.However,with increasing temperature,hardening effect via pre-torsion gradually decreases.When the compressive temperature reaches 300℃,pre-torsion reduces the compressive yield strength.Moreover,initial dislocations and twins via torsion help to refine the sub-structure and accelerate the continuous dynamic recrystallization during compression at 200℃.Thus,twisted sample exhibits more rapid flow softening behavior than the as-extruded sample at 200℃.When compressed at 300℃,the twins and dislocations via torsion were largely eliminated during the holding time,and the discontinuous dynamic recrystallization was enhanced.It is found that the compression curves of twisted sample and as-extruded sample tended to be coincident at 300℃.Related mechanisms were discussed in detail.
文摘Stone structures with dry joints, that is, without mortar, have shown a surprising behavior when earthquakes occur. An example of this behavior is the perennially of the so-called Inca wall in Peru, which despite having suffered several earthquakes over time has remained stable without collapsing. This article presents the research carried out on stone masonry wails with dry joint, without mortar, subject to a seismic action. In order to understand the behavior of the masonry without mortar, it designs a Grid mode/ of Finite Elements. From the results, it is concluded that these walls with a certain thickness have ductility that allows them to withstand high displacement and rotation values, thus accommodating the movement of the earth subject to an earthquake. The individual stone blocks move relative to each other through rotations and displacements, which are processed in the free joints of any mortar. The joints work as energy sinks. The free movements in the joints dissipate the energy transmitted by the earthquake, not causing in this way the rupture of the stone blocks. The goal of this article is to understand the p importance of lack of mortar in the seismic behavior of the mansonry.
文摘ADVN (2,2'-Azobis (2,4-dimethyl) valeronitrile), a free radical initiator, is widely applied for the polymerization reaction of polymers in the chemical industries. When ADVN releases free radical during the decomposition process, it can accompany abundant heat and huge pressure to increase the possibility of thermal runaway and hazard, causing unacceptable thermal explosion or fire accidents. To develop an inherently safer process for ADVN, the thermal stability parameters of ADVN were obtained to investigate thermal decomposition characteristics using a DSC (differential scanning calorimetry) and TG (thermogravimetry). We used various kinetic models to completely depict the kinetic behavior and determine the thermal safety parameters for ADVN. The green thermal analysis approach could be used to substitute for complicated procedures and large-scale experiments of traditional thermal analysis methods, avoiding environmental pollution and energy depletion.
文摘We present the results of theoretical and experimental studies of flow processes of extended axisymmetric cavitators during motion near a free surface taking into account a considerable effect of fluid weightiness. The main objective of work is to study ways of reduction of fluid weightiness effect using lift at cavitator and other body (hull) elements within a cavity, in order to apply this way of drag reduction for a range of considerably lower motion speeds.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)
文摘The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.
基金supported by the National Natural Science Foundation of China (Grants Nos. 50904071,11021262,10932011 and 91116003)the Fundamental Research Funds for the Central Universities (Grant No.2010QZ01)the National Basic Research Program of China (Grant No.2012CB937500)
文摘In the present research,the measurement fluctuations of mechanical properties in nanowires (NWs) are investigated by using the molecular dynamics simulation.The large numbers of simulations are performed to study the yield behaviors of the NWs.The results have shown that the yield behavior of the smaller diameter NW is more sensitive to the presence of vacancies,and the dispersion of the measured mechanical properties for the small scale NW is larger than that for the large scale NW.Present results have also shown that vacancies escape from the bulk to the free surfaces as a result of high stress applied at the small scale systems similar to the dislocation starvation phenomenon observed in the compression test of nano-pillars,and dislocation nucleation induced by surface defect occurs after the vacancy reaches free surface leading to lower yield strength.Moreover,the strong surface vacancy interactions at the nanoscale level are also investigated.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.