The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the prope...The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.展开更多
Saturated vapor pressure was calculated from the nucleation experimental data using the thermodynamically consistent nucleation theory in which the effect of real gas is considered. The cubic polynomial fit equations ...Saturated vapor pressure was calculated from the nucleation experimental data using the thermodynamically consistent nucleation theory in which the effect of real gas is considered. The cubic polynomial fit equations of saturation pressure for several substances were obtained based on the calculation. The results of the calculations were compared to those of thermodynamic equilibrium equation and the empirical equation and applied to the predictions of the classical nucleation theory. The results show that the saturation pressures estimated from the nucleation data agree fairly well with those of empirical equations for the substances investigated, and this indicates that the predictions from the classical nucleation theory are close to the experimental data.展开更多
Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on...Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.展开更多
annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-fo...annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the eonfoeal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confoeal microscope and its lateral resolution can be better than 0.2 um for A = 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius e = 0.5.展开更多
The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-...The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift(WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2 on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly depended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cubic and face centered cubic(bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2 over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating conditions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.展开更多
This study was conducted to evaluate the intake, total and partial digestibility of nutrient, ruminal pH and ammonia concentration, microbial protein synthesis and performance in crossbred Holstein × Zebu cattle ...This study was conducted to evaluate the intake, total and partial digestibility of nutrient, ruminal pH and ammonia concentration, microbial protein synthesis and performance in crossbred Holstein × Zebu cattle fed four different hybrids sorghum silages (1F305, XBF60329, BRS610, Volumax). In Experiment 1, four rumen and abomasum fistulated steers, 400 ± 80 kg, distributed in a 4 × 4 Latin Square, were used. In Experiment 2, 28 crossbred Holstein × Zebu steers, 350 ± 50 kg, distributed in a randomized block design with four treatments and seven replicates, were used. In Experiment 1, it was observed that nutrient intake, as well as total, ruminal and intestinal digestibility of nutrient, were not affected (P 〉 0.05) by diets, except for total apparent digestibility of neutral detergent fiber (NDFap), which was lower for the BRS610 hybrid. There was lower NDFap ingestion in animals that received a diet containing silage from the BRS610 hybrid, however, the lowest intake non-fibrous carbohydrates (NFC) was observed for the diet containing silage from the Volumax hybrid. In Experiment 2, nutrient intake were not affected by the diets (P 〉 0.05), whereas, NDFap intake was lesser for hybrid BRS610. It was found that daily weight gain and feed conversion were not affected by different silages diets. Therefore, it may be concluded that the diets used were nutritionally equivalent, as they promoted similar animal performance without affecting ruminal parameters.展开更多
Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attribute...Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.展开更多
Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand ...Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.展开更多
The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at me...The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at metal surfaces, have been introduced as an entity that is able to guide light on the surfaces of the metal and to concentrate light in subwavelength volumes. It has been found that periodic array of metallic nanospheres, could be able to enhance the light transmission, and guiding light at nanoscale. The coupling between two nanoparticles in these devices is very important. The Bloch-Jensen hydrodynamical method has been used for computing surface plasmons' frequencies of a single metallic nanosphere. It contains the entire pole spectrum automatically, so it is more exactly than the other computational methods. In this research, we have computed the surface plasmons' frequencies of two adjacent nanospheres by Bloch-Jensen hydrodynamical model for the first time. The results show that there are two modes for this system, which depend explicitly on interparticle spacing. In addition, we have shown that the excitation modes yield to a single mode of a nanoparticle as the interparticle spacing increases.展开更多
This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface...This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.展开更多
Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic rough...Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic roughness length,bulk transfer coefficients,etc.,were investigated using the EC data in 2012.The characteristics of turbulence fluxes over the lake including momentum flux,sensible heat flux,latent heat flux,and CO2 flux,and their controlling factors were analyzed.The total annual evaporation of the lake was also estimated based on the artificial neural network(ANN) gap-filling technique.Results showed that the total annual evaporation in 2012 was 1165 ± 15 mm,which was larger than the annual precipitation(818 mm).Local circulation between the lake and the surrounding land was found to be significant throughout the year due to the land-lake breeze or the mountain-valley breeze in this area.The prevailing winds of southeasterly and northwesterly were observed throughout the year.The sensible heat flux over this plateau lake usually had a few tens of W m-2,and generally became negative in the afternoon,indicating that heat was transferred from the lake to the atmosphere.The sensible heat flux was governed by the lake-air temperature difference and had its maximum in the early morning.The diurnal variation of the latent heat flux was controlled by vapor pressure deficit with a peak in the afternoon.The latent heat flux was dominant in the partition of available energy in daytime over this lake.The lake acted as a weak CO2 source to the atmosphere except for the midday of summer.Seasonal variations of surface albedo over the lake were related to the solar elevation angle and opacity of the water.Furthermore,compared with the observation data,the surface albedo estimated by CLM4-LISSS model was underestimated in winter and overestimated in summer.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51874372).
文摘The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.
基金Ⅵ. ACKN0WLEDGMENTS This work was supported Science Foundation of China by the National Natural (No.10272099).
文摘Saturated vapor pressure was calculated from the nucleation experimental data using the thermodynamically consistent nucleation theory in which the effect of real gas is considered. The cubic polynomial fit equations of saturation pressure for several substances were obtained based on the calculation. The results of the calculations were compared to those of thermodynamic equilibrium equation and the empirical equation and applied to the predictions of the classical nucleation theory. The results show that the saturation pressures estimated from the nucleation data agree fairly well with those of empirical equations for the substances investigated, and this indicates that the predictions from the classical nucleation theory are close to the experimental data.
基金Supported by the National Natural Science Foundation of China under Grant No.51079157
文摘Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No 50475035), the Doctoral Program of Higher Education of China (Grant No 20050213035) and the Program for New Century Excellent Talents in University of China (Grant No NCET-05-0348).
文摘annular beam tri-heterodyne confocal microscope has been proposed to improve the anti-environmental interference capability and the resolution of a eonfoeal microscope. It simultaneously detects far-, on-, and near-focus signals with given phase differences by dividing the measured light path of the eonfoeal microscope into three sub-paths (signals). Pair-wise real-time heterodyne subtraction of the three signals is used to improve the anti-environmental interference capability, axial resolution, and linearity; and a shaped annular beam super-resolution technique is used to improve lateral resolution. Theoretical analyses and preliminary experiments indicate that an axial resolution of about 1 nm can be achieved with a shaped annular beam tri-heterodyne confoeal microscope and its lateral resolution can be better than 0.2 um for A = 632.8 nm, the numerical aperture of the lens of the microscope is NA = 0.85, and the normalized radius e = 0.5.
基金Supported by the National Natural Science Foundation of China(50972038)the National Natural Science Foundation of Hebei Province(B2009000739,B2014209258)Science and Technology Support Program of Hebei Province(09215142D)
文摘The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift(WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2 on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly depended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cubic and face centered cubic(bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2 over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating conditions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.
文摘This study was conducted to evaluate the intake, total and partial digestibility of nutrient, ruminal pH and ammonia concentration, microbial protein synthesis and performance in crossbred Holstein × Zebu cattle fed four different hybrids sorghum silages (1F305, XBF60329, BRS610, Volumax). In Experiment 1, four rumen and abomasum fistulated steers, 400 ± 80 kg, distributed in a 4 × 4 Latin Square, were used. In Experiment 2, 28 crossbred Holstein × Zebu steers, 350 ± 50 kg, distributed in a randomized block design with four treatments and seven replicates, were used. In Experiment 1, it was observed that nutrient intake, as well as total, ruminal and intestinal digestibility of nutrient, were not affected (P 〉 0.05) by diets, except for total apparent digestibility of neutral detergent fiber (NDFap), which was lower for the BRS610 hybrid. There was lower NDFap ingestion in animals that received a diet containing silage from the BRS610 hybrid, however, the lowest intake non-fibrous carbohydrates (NFC) was observed for the diet containing silage from the Volumax hybrid. In Experiment 2, nutrient intake were not affected by the diets (P 〉 0.05), whereas, NDFap intake was lesser for hybrid BRS610. It was found that daily weight gain and feed conversion were not affected by different silages diets. Therefore, it may be concluded that the diets used were nutritionally equivalent, as they promoted similar animal performance without affecting ruminal parameters.
基金Supported by the National Natural Science Foundation of China(Nos. 40876013,40906008,41176011,41106012,and U0933001) and GDUPS(2010)
文摘Wave breaking is an important process that controls turbulence properties and fluxes of heat and mass in the upper oceanic layer.A model is described for energy dissipation per unit area at the ocean surface attributed to wind-generated breaking waves,in terms of ratio of energy dissipation to energy input,windgenerated wave spectrum,and wave growth rate.Also advanced is a vertical distribution model of turbulent kinetic energy,based on an exponential distribution method.The result shows that energy dissipation rate depends heavily on wind speed and sea state.Our results agree well with predictions of previous works.
文摘Processes like combustion, pyrolysis or gasification of coal and biomass are typical applications of gas-solid fluidized beds. These reactors normally use silica sand as the inert material inside the bed and the sand particles represent around 95% of the total bed weight. Pressure measurements have been used to characterize the dynamic behavior of fluidized beds since early researches in the area. Pressure fluctuations are generally due to bubbles flow which characterizes the fluidization regime. The present work aims to perform a time-frequency analysis of the pressure signal acquired in an experimental apparatus on different gas-solid flow regimes. Continuous and discrete wavelet transforms were applied and the results were compared with image records acquired simultaneously with the pressure signal. The main frequencies observed are in accordance with the ones obtained through Fourier spectra. The time-frequency distribution of the signal agrees with the phenomena observed in the image record, remarkably for the slugging flow. Some additional research is still necessary to completely characterize the flow regimes using the wavelet scalograms but the present results show that the task is a very promising one.
文摘The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at metal surfaces, have been introduced as an entity that is able to guide light on the surfaces of the metal and to concentrate light in subwavelength volumes. It has been found that periodic array of metallic nanospheres, could be able to enhance the light transmission, and guiding light at nanoscale. The coupling between two nanoparticles in these devices is very important. The Bloch-Jensen hydrodynamical method has been used for computing surface plasmons' frequencies of a single metallic nanosphere. It contains the entire pole spectrum automatically, so it is more exactly than the other computational methods. In this research, we have computed the surface plasmons' frequencies of two adjacent nanospheres by Bloch-Jensen hydrodynamical model for the first time. The results show that there are two modes for this system, which depend explicitly on interparticle spacing. In addition, we have shown that the excitation modes yield to a single mode of a nanoparticle as the interparticle spacing increases.
基金financially supported by the National Natural Science Foundation of China through Grant No.51336007
文摘This paper describes the numerical study on film cooling effectiveness and aerodynamic loss due to coolant and main stream mixing for a turbine guide vane. The effects of blowing ratio, mainstream Mach number, surface curvature on the cooling effectiveness and mixing loss were studied and discussed. The numerical results show that the distributions of film cooling effectiveness on the suction surface and pressure surface at the same blowing ratio(BR) are different due to local surface curvature and pressure gradient. The aerodynamic loss features for film holes on the pressure surface are also different from film holes on the suction surface.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030106,41021004)the National Basic Research Program of China(Grant No.2010CB951801)
文摘Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic roughness length,bulk transfer coefficients,etc.,were investigated using the EC data in 2012.The characteristics of turbulence fluxes over the lake including momentum flux,sensible heat flux,latent heat flux,and CO2 flux,and their controlling factors were analyzed.The total annual evaporation of the lake was also estimated based on the artificial neural network(ANN) gap-filling technique.Results showed that the total annual evaporation in 2012 was 1165 ± 15 mm,which was larger than the annual precipitation(818 mm).Local circulation between the lake and the surrounding land was found to be significant throughout the year due to the land-lake breeze or the mountain-valley breeze in this area.The prevailing winds of southeasterly and northwesterly were observed throughout the year.The sensible heat flux over this plateau lake usually had a few tens of W m-2,and generally became negative in the afternoon,indicating that heat was transferred from the lake to the atmosphere.The sensible heat flux was governed by the lake-air temperature difference and had its maximum in the early morning.The diurnal variation of the latent heat flux was controlled by vapor pressure deficit with a peak in the afternoon.The latent heat flux was dominant in the partition of available energy in daytime over this lake.The lake acted as a weak CO2 source to the atmosphere except for the midday of summer.Seasonal variations of surface albedo over the lake were related to the solar elevation angle and opacity of the water.Furthermore,compared with the observation data,the surface albedo estimated by CLM4-LISSS model was underestimated in winter and overestimated in summer.