The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on f...The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.展开更多
Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipa...Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.展开更多
The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the diel...The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the dielectric properties of the vegetation to establish the relationship between its specific physical parameters and complex permittivity is fundamental.In this study,six categories of vegetation samples were collected at the city of Zhangye,a key research area of the Heihe watershed allied telemetry experimental research.The vector network analyzer E8362B was used to measure the complex permittivity of these samples from 0.2 to 20 GHz by the coaxial probe technique.The research focused mainly on the corn leaves,and an empirical model was established between the gravimetric moisture and the real/imaginary parts of complex permittivity at the main frequency points of microwave sensors.Furthermore,the empirical model and the classical Debye-Cole model were compared and verified by the measured data collected from the Huailai County of Hebei Province.The results show that the newly- established empirical model is more accurate and more practical as compared to the traditional Debye-Cole model.展开更多
文摘The soil-structure interaction (SSI) decoupling is applied to simplify buried structure against internal blast load as spring effect. Shear failure, bending failure and combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element. The critical equations for shear and bending failure are derived respectively. Pressureimpulse diagrams are accordingly developed to assess damage of the buried structures against internal blast load. Comparison is done to show influences of soil-structure interaction and shear-to-bending strength ratio of a structural element. A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.
文摘Based on the former performance capacity experiments of the magnet-friction energy dissipation devices, including the permanent magnet-friction energy dissipation device (PMF) and electromagnet-friction energy dissipation devices (EMF), a 5-story steel frame model with spacious first story is designed and made according to a scale of 1/4. The magnet-friction energy dissipation devices can realize continuously varied controlling force, with rapid response and reverse recognition. Therefore, they overcome shortcomings usually found in energy dissipation devices whose force models are invariable. The two kinds of devices were fixed on the flexible first story of the structure model, and the shaking table tests have been carried out, respectively. In these tests, the performance of the devices and their effectiveness in structural control were confirmed. In this paper, the test results and analysis are discussed.
基金supported by the Chinese Ministry of Science and Technology(Grant Nos.2011AA120403&2010CB951403)the National Natural Science Foundation of China(Grant No.41101391)
文摘The complex permittivity of targeted objects is an important factor that influences its microwave radiation and scattering characteristics.In the quantitative research of microwave remote sensing,the study of the dielectric properties of the vegetation to establish the relationship between its specific physical parameters and complex permittivity is fundamental.In this study,six categories of vegetation samples were collected at the city of Zhangye,a key research area of the Heihe watershed allied telemetry experimental research.The vector network analyzer E8362B was used to measure the complex permittivity of these samples from 0.2 to 20 GHz by the coaxial probe technique.The research focused mainly on the corn leaves,and an empirical model was established between the gravimetric moisture and the real/imaginary parts of complex permittivity at the main frequency points of microwave sensors.Furthermore,the empirical model and the classical Debye-Cole model were compared and verified by the measured data collected from the Huailai County of Hebei Province.The results show that the newly- established empirical model is more accurate and more practical as compared to the traditional Debye-Cole model.