Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northem Philippine coast. Pronou...Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northem Philippine coast. Pronounced finestructttres were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50 m and 50-100 m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.展开更多
Dust aerosol optical depth (AOD) and its ac-companying shortwave radiative forcing (RF) are usually simulated by numerical models.Here,by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol...Dust aerosol optical depth (AOD) and its ac-companying shortwave radiative forcing (RF) are usually simulated by numerical models.Here,by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product data in combination with Clouds and the Earth's Radiant Energy System Single Scanner Footprint (CERES/SSF) data,dust AOD and its shortwave RF were estimated over the cloud-free north-west (NW) Pacific Ocean in the springs of 2004,2005,and 2006.The results showed that in this region,the mean dust AOD and its shortwave RF were 0.10 and 5.51 W m 2,respectively.In order to validate the dust AOD de-rived by MODIS,results from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model were also used here.The correlation coefficient between the monthly averaged dust AOD derived by MODIS measurements and the model simulation results was approximately 0.53.Since the estimates of the dust AOD and its shortwave RF obtained in this study are based mainly on satellite data,they offer a good reference for numerical models.展开更多
Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile reg...Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile regression to the CMA-STI tropical cyclone best track and related severe wind and precipitation observation datasets.The results indicate that in the past 50 years,the number of TCs affecting China and its four subregions has remained steady,except that the frequency in extremely active years has decreased not only in China as a whole,but also in NEC.In addition,TC activity is found to have weakened over the northwest South China Sea,Guangdong,and Shandong Peninsula.However,the most important changes in seasonality are found in the first quartiles of the number of days of TCs affecting CI.While the extreme values of sustained winds all have decreasing trends,the extreme values of wind gusts are completely different not only among different orders of extreme values,but also among different subregions.However,the trends of extreme TC rainfall,namely the maximum storm precipitation and the maximum 1-h precipitation,are not significant.展开更多
Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffract...Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.展开更多
基金Supported by the National Natural Science Foundation of China (No.40890152)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘Using hydrographic measurements from three recent surveys in the western tropical Pacific, this study revealed the existence and general features of thermohaline finestructure near the northem Philippine coast. Pronounced finestructttres were detected in the layers of the North Pacific Tropical Water (NPTW) and the North Pacific Intermediate Water (NPIW) during all three cruises and shown to be mainly thermohaline intrusions. Characteristics of the intrusions were further investigated with spiciness curvature and salinity anomaly methods. The vertical scale of the intrusions was 20-50 m and 50-100 m in the NPTW and NPIW layers, respectively. Within the NPTW layer, the Turner angle distribution and correlation between salinity and density anomalies suggested that diffusive convection between surface fresh water and subsurface saline water played an important role in the development and maintenance of the intrusions. In addition, connection between thermohaline finestructure and larger-scale oceanic processes was explored using historical hydrographic data. The results reveal that the salinity field and the distribution of the intrusions in this region were largely determined by mesoscale eddies. As a result of eddy stirring, both isopycnal and diapycnal temperature/salinity gradients were strengthened, which gave rise to the development of thermohaline intrusions. The intrusions acted to enhance heat and salt fluxes and resulted in the mixing of water masses being more efficient. By linking mesoscale eddy stirring to micro-scale diffusion, thermohaline finestructure plays a vital role in the ocean energy cascade and water mass conversion in the northern Philippine Sea.
基金supported by the National Basic Research Program of China (Grant No.2006CB403705)Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No.2008BAC40B01 and 2007BAC03A01)LASG Free Exploration Fund
文摘Dust aerosol optical depth (AOD) and its ac-companying shortwave radiative forcing (RF) are usually simulated by numerical models.Here,by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product data in combination with Clouds and the Earth's Radiant Energy System Single Scanner Footprint (CERES/SSF) data,dust AOD and its shortwave RF were estimated over the cloud-free north-west (NW) Pacific Ocean in the springs of 2004,2005,and 2006.The results showed that in this region,the mean dust AOD and its shortwave RF were 0.10 and 5.51 W m 2,respectively.In order to validate the dust AOD de-rived by MODIS,results from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model were also used here.The correlation coefficient between the monthly averaged dust AOD derived by MODIS measurements and the model simulation results was approximately 0.53.Since the estimates of the dust AOD and its shortwave RF obtained in this study are based mainly on satellite data,they offer a good reference for numerical models.
基金sponsored by the Climate Change Specialized Foundation of the China Meteorological Administration(Grant No.CCSF-09-10)the National Natural Science Foundation of China(Grant Nos.40805040 and 41075071)
文摘Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile regression to the CMA-STI tropical cyclone best track and related severe wind and precipitation observation datasets.The results indicate that in the past 50 years,the number of TCs affecting China and its four subregions has remained steady,except that the frequency in extremely active years has decreased not only in China as a whole,but also in NEC.In addition,TC activity is found to have weakened over the northwest South China Sea,Guangdong,and Shandong Peninsula.However,the most important changes in seasonality are found in the first quartiles of the number of days of TCs affecting CI.While the extreme values of sustained winds all have decreasing trends,the extreme values of wind gusts are completely different not only among different orders of extreme values,but also among different subregions.However,the trends of extreme TC rainfall,namely the maximum storm precipitation and the maximum 1-h precipitation,are not significant.
基金supported by the National Natural Science Foundation of China (Grant No.40772133)
文摘Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.