Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiab...Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiable single-objective and multiobjective programming problems by using Motzkin's alternative theorem and Ben-Tal generalized algebraic operations.展开更多
We construct a class of modules for extended affine Lie algebra gl l(Cq) by using the free fields. A necessary and sufficient condition is given for those modules being irreducible.
This paper studies the similarity invariants of operators on a class of Gowers-Maurey spaces, ∑dc spaces, where an infinite dimensional Banach space X is called a ∑dc space if for every bounded linear operator on X ...This paper studies the similarity invariants of operators on a class of Gowers-Maurey spaces, ∑dc spaces, where an infinite dimensional Banach space X is called a ∑dc space if for every bounded linear operator on X the spectrum is disconnected unless it is a singleton. It shows that two strongly irreducible operators T1 and T2 on a ∑dc space are similar if and only if theK0-group of the commutant algebra of the direct sum T1 GT2 is isomorphic to the group of integers Z. On a ∑dc space X, it uses the semigroups of the commutant algebras of operators to give a condition that an operator is similar to some operator in (∑SI)(X), it further gives a necessary and sufficient condition that two operators in (∑SI)(X) are similar by using the ordered K0-groups. It also proves that every operator in (∑SI)(X) has a unique (SI) decomposition up to similarity on a ∑dc space X, where (∑SI)(X) denotes the class of operators which can be written as a direct sum of finitely many strongly irreducible operators.展开更多
基金This research is supported by the National Natural Science Foundation of China Grant 10261006, the Foundation of Education Section of Excellent Doctorial Theses Grant 200217 and the Basic Theory Foundation of Nanchang University.
文摘Five kinds of cones are introduced, which are used to establish the constraints qualifications, under which the generalized Kuhn-Tucker necessary conditions are developed for a class of generalized (h,φ)-differentiable single-objective and multiobjective programming problems by using Motzkin's alternative theorem and Ben-Tal generalized algebraic operations.
基金supported by National Natural Science Foundation of China (Grant Nos.10726014, 10801010)
文摘We construct a class of modules for extended affine Lie algebra gl l(Cq) by using the free fields. A necessary and sufficient condition is given for those modules being irreducible.
基金supported by National Natural Science Foundation of China (Grant No.11171066)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 2010350311001)+1 种基金Fujian Natural Science Foundation (Grant No. 2009J05002)Scientific Research Foundation of Fuzhou University (Grant No. 022459)
文摘This paper studies the similarity invariants of operators on a class of Gowers-Maurey spaces, ∑dc spaces, where an infinite dimensional Banach space X is called a ∑dc space if for every bounded linear operator on X the spectrum is disconnected unless it is a singleton. It shows that two strongly irreducible operators T1 and T2 on a ∑dc space are similar if and only if theK0-group of the commutant algebra of the direct sum T1 GT2 is isomorphic to the group of integers Z. On a ∑dc space X, it uses the semigroups of the commutant algebras of operators to give a condition that an operator is similar to some operator in (∑SI)(X), it further gives a necessary and sufficient condition that two operators in (∑SI)(X) are similar by using the ordered K0-groups. It also proves that every operator in (∑SI)(X) has a unique (SI) decomposition up to similarity on a ∑dc space X, where (∑SI)(X) denotes the class of operators which can be written as a direct sum of finitely many strongly irreducible operators.