The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and in...The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and increasing multi-level amplitudes. The frequencies range from 0.1 to 5 Hz and lower limit load ratios range from 0 to 0.60. Laboratory investigations were performed to find the effect of the frequency and the lower limit load ratio on the fatigue life and hysteresis properties of sandstone. The results show that the fatigue life of sandstone decreases first and then increases with the increase of frequency and lower limit load ratio. Under the same cycle number, the spacing between hysteresis loops increases with rising frequency and decreasing lower limit load ratio. The existence of “training” and “memory” effects in red sandstone under cyclic point loading was proved.展开更多
The microstructure,martensitic transformation behavior,mechanical and shape memory properties of Ni56Mn25-xCrxGa19(x=0,2,4,6) alloys were investigated.Single phase of martensite with tetragonal structure is present ...The microstructure,martensitic transformation behavior,mechanical and shape memory properties of Ni56Mn25-xCrxGa19(x=0,2,4,6) alloys were investigated.Single phase of martensite with tetragonal structure is present for x=0,and dual-phase containing martensite and γ phase is observed for x≥2.The martensitic transformation peak temperatures decrease monotonically from 401 ℃ for x=0 to 197 ℃ for x=6.The introduction of γ phase by Cr addition is proved to be effective in improving the workability and ductility.The tensile stress and strain are 497 MPa and 8 % for x=4,and 454 MPa and 5.5 % for x=6,respectively.The shape memory strain values are 2.7 % under a residual strain of 4.5 % for x=4,and 1.9 % under a residual strain of 3.5 % for x=6,respectively.展开更多
The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a ...The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.展开更多
To reduce the number of digital predistortion coefficients, a step memory polynomial (SMP)predistorter is presented. The number of predistortion coefficients is decreased by adjusting the maximum nonlinear order for...To reduce the number of digital predistortion coefficients, a step memory polynomial (SMP)predistorter is presented. The number of predistortion coefficients is decreased by adjusting the maximum nonlinear order for different memory orders in the traditional memory polynomial (MP)predistorter. The proposed SNIP predistorter is identified by an offline learning structure on which the coefficients can be extracted directly from the sampled input and output of a PA. Simulation results show that the SMP predistorter is not tied to a particular PA model and is, therefore, robust. The effectiveness of the SMP predistorter is demonstrated by simulations and experiments on an MP model, a parallel Wiener model, a Wiener-Hammerstein model, a sparsedelay memory polynomial model and a real PA which is fabricated based on the Freescale LDMOSFET MRF21030. Compared with the traditional MP predistorter, the SMP predistorter can reduce the number of coefficients by 60%.展开更多
The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical ...The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.展开更多
To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was invest...To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.展开更多
As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at...As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at.%) were prepared by arc melting.A binary composition of Ti-6 Mo alloy was also prepared for comparison.Ti-xMo-3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti-6 Mo alloy shows high hardness,brittle behavior,and poor ductility.Field emission scanning electron microscopy(FESEM) reveals round morphology of athermal ω(ωath) precipitates.The presence of ωath phase is also confirmed by X-ray diffraction(XRD)in both as-cast and solution-treated and quenched conditions.The optical microscopy(OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content,which is also due to β→ω transformation.The hardness trends reinforce the presence of ωath too.The shape memory effect(SME) of 9% is the highest for Ti-6 Mo-3Sn alloy.The SME is trivial due to ωath phase formation;however,the increase in SME is observed with an increase in Mo content,which is due to the reverse transformation from ωath and the stress-induced martensitic transformation.In addition,a new and very simple method was designed and used for shape memory effect measurement.展开更多
The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by fiel...The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, differential scanning calorimetry and electrochemical and immersion tests in NaCl solution. It was observed that the microstructure, shape memory effect and corrosion characteristics are highly sensitive to the composition variations. It was found that the highest strain recovery was with 0.7% addition of Mn or Ti. This may be attributed to the presence of precipitation with a high volume fraction and the grain refinement. The electrochemical test showed that the formation of oxide layers in both Cu-Al-Ni-Mn and Cu-Al-Ni-Ti shape memory alloys(SMAs) provided good passivation which enhanced the corrosion resistance of the alloys. Immersion test showed that in Cu-Al-Ni-Mn SMAs, pitting corrosion occurred through feebleness in the oxide layer. A corrosion product adjacent to the pits was rich in Al/Mn oxide and depleted in Cu while inside of the pit it was rich in Cu. In Cu-Al-Ni-Ti SMAs, localized corrosion occurred on the surface of the specimens and dealuminization attack was also observed in the matrix.展开更多
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive redu...The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.展开更多
Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into co...Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.展开更多
We analyze the classical and quantum correlation properties of the standard and so-called quasiclassical depolarizing channel with correlated noise and non-Markovian dephasing channel, specifically we use the quantum ...We analyze the classical and quantum correlation properties of the standard and so-called quasiclassical depolarizing channel with correlated noise and non-Markovian dephasing channel, specifically we use the quantum discord, entanglement, and measurement-induced disturbance (MID) to measure the quantum correlations. For the depolarizing channel, we find that the memory effect has more influence on the MID and quantum discord than entanglement. For the dephasing channel, we show that the non-Markovian dephasing channel is more robust than Markovian dephasing channel against deeoherence. We also find that at first MID and quantum discord take different values, and then after a specific time they will take almost the same value and both decay monotonically in the same way.展开更多
基金Projects(51322403,51274254)supported by the National Natural Science Foundation of ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘The mechanical properties of red sandstone subjected to cyclic point loading were investigated. Tests were conducted using MTS servohydraulic landmark test system, under cyclic loadings with constant amplitudes and increasing multi-level amplitudes. The frequencies range from 0.1 to 5 Hz and lower limit load ratios range from 0 to 0.60. Laboratory investigations were performed to find the effect of the frequency and the lower limit load ratio on the fatigue life and hysteresis properties of sandstone. The results show that the fatigue life of sandstone decreases first and then increases with the increase of frequency and lower limit load ratio. Under the same cycle number, the spacing between hysteresis loops increases with rising frequency and decreasing lower limit load ratio. The existence of “training” and “memory” effects in red sandstone under cyclic point loading was proved.
基金Project(50771086)supported by the National Natural Science Foundation of ChinaProject(NCET-09-0676)supported by Program for New Century Excellent Talents in University(NCET),China+1 种基金Project supported by Program for New Century Excellent Talents in Fujian Provincial University(NCETFJ),ChinaProject(2009H0039)supported by Fujian Provincial Department of Science and Technology,China
文摘The microstructure,martensitic transformation behavior,mechanical and shape memory properties of Ni56Mn25-xCrxGa19(x=0,2,4,6) alloys were investigated.Single phase of martensite with tetragonal structure is present for x=0,and dual-phase containing martensite and γ phase is observed for x≥2.The martensitic transformation peak temperatures decrease monotonically from 401 ℃ for x=0 to 197 ℃ for x=6.The introduction of γ phase by Cr addition is proved to be effective in improving the workability and ductility.The tensile stress and strain are 497 MPa and 8 % for x=4,and 454 MPa and 5.5 % for x=6,respectively.The shape memory strain values are 2.7 % under a residual strain of 4.5 % for x=4,and 1.9 % under a residual strain of 3.5 % for x=6,respectively.
基金Project(50771086) supported by the National Natural Science Foundation of ChinaProject(NCET) supported by Program for New Century Excellent Talents in University, China+1 种基金Project(NCETFJ) supported by Program for New Century Excellent Talents in Fujian Province University, ChinaProject(2009H0039) supported by Fujian Provincial Department of Science and Technology, China
文摘The effects of Si addition on microstructures, mechanical and shape memory properties of Ti-55Ta biomedical alloy were investigated. The results show that the microstructures consist of mainly α′′ martensite and a little β phase, and the grain size decreases obviously with increasing Si addition. When x = 0.2, small (Ti, Ta)3Si precipitates are formed at grain boundaries. With further increasing Si content, the amount of the precipitates gradually increases. The tensile and yield strength of Ti-55Ta-xSi alloys gradually increase with increasing Si addition, whereas elongation decreases. Ti-55Ta-0.1Si alloy exhibits the lowest elastic modulus and the best shape memory recoverable strain. It is revealed that the refinement of grain and the precipitation of (Ti, Ta)3Si phase are responsible to the changes of their mechanical and shape memory properties.
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z211)the Project of Industry-Academia-Research Demonstration Base of Education Ministry of Guangdong Province (No.2007B090200012)
文摘To reduce the number of digital predistortion coefficients, a step memory polynomial (SMP)predistorter is presented. The number of predistortion coefficients is decreased by adjusting the maximum nonlinear order for different memory orders in the traditional memory polynomial (MP)predistorter. The proposed SNIP predistorter is identified by an offline learning structure on which the coefficients can be extracted directly from the sampled input and output of a PA. Simulation results show that the SMP predistorter is not tied to a particular PA model and is, therefore, robust. The effectiveness of the SMP predistorter is demonstrated by simulations and experiments on an MP model, a parallel Wiener model, a Wiener-Hammerstein model, a sparsedelay memory polynomial model and a real PA which is fabricated based on the Freescale LDMOSFET MRF21030. Compared with the traditional MP predistorter, the SMP predistorter can reduce the number of coefficients by 60%.
文摘The effect of recovery heating rate on shape memory effect of the up-quenched Cu-8.88Al-10.27Mn(mass fraction, %) alloy was investigated by optical microscopy, electron transmission microscopy(TEM) and electrical resistivity measurement. It is found that the shape recovery rate decreases as the heating rate decreases. It can reach 75% when the heating rate is 20 ℃/min, while it is only 8% when the heating rate is 1 ℃/min. In situ microstructure observation indicates that the dependence of shape memory effect on recovery heating rate is caused by the stabilization of twinned martensite induced by deformation. The analysis of electrical resistivity shows that the stabilization of twinned martensite may be ascribed to formation of compound defects of vacancies and dislocations at the boundaries of twinned martensite during the slow heating. The compound defects prevent the reverse transformation of twinned martensite.
基金Projects(51171123,51271128)supported by the National Natural Science Foundation of China
文摘To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.
基金the Higher Education Commission (HЕС) Pakistan for provision of research funding (Project No. 20-3844/R&D/HEC/14) under National Research Program for Universities (NRPU)
文摘As a β stabilizing element in Ti-based alloys,the effect of Mo on phase constitution,microstructure,mechanical and shape memory properties was investigated.Different compositions of Ti-xMo-3Sn alloys(where x=2,4,6,at.%) were prepared by arc melting.A binary composition of Ti-6 Mo alloy was also prepared for comparison.Ti-xMo-3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti-6 Mo alloy shows high hardness,brittle behavior,and poor ductility.Field emission scanning electron microscopy(FESEM) reveals round morphology of athermal ω(ωath) precipitates.The presence of ωath phase is also confirmed by X-ray diffraction(XRD)in both as-cast and solution-treated and quenched conditions.The optical microscopy(OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content,which is also due to β→ω transformation.The hardness trends reinforce the presence of ωath too.The shape memory effect(SME) of 9% is the highest for Ti-6 Mo-3Sn alloy.The SME is trivial due to ωath phase formation;however,the increase in SME is observed with an increase in Mo content,which is due to the reverse transformation from ωath and the stress-induced martensitic transformation.In addition,a new and very simple method was designed and used for shape memory effect measurement.
基金the Malaysian Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for providing the financial support and facilities for this research, under Grant No. R.J130000.7824.4F150
文摘The effects of different contents(0.4%, 0.7%, and 1.0%, mass fraction) of Mn or Ti additions on the micro structure, shape memory effect and the corrosion behaviour of Cu-Al-Ni shape memory alloys were studied by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, differential scanning calorimetry and electrochemical and immersion tests in NaCl solution. It was observed that the microstructure, shape memory effect and corrosion characteristics are highly sensitive to the composition variations. It was found that the highest strain recovery was with 0.7% addition of Mn or Ti. This may be attributed to the presence of precipitation with a high volume fraction and the grain refinement. The electrochemical test showed that the formation of oxide layers in both Cu-Al-Ni-Mn and Cu-Al-Ni-Ti shape memory alloys(SMAs) provided good passivation which enhanced the corrosion resistance of the alloys. Immersion test showed that in Cu-Al-Ni-Mn SMAs, pitting corrosion occurred through feebleness in the oxide layer. A corrosion product adjacent to the pits was rich in Al/Mn oxide and depleted in Cu while inside of the pit it was rich in Cu. In Cu-Al-Ni-Ti SMAs, localized corrosion occurred on the surface of the specimens and dealuminization attack was also observed in the matrix.
基金Supported by the Project of Teaching Quality in SUST under Grant No. 2010JGB-27the National Natural Science Foundation under Grant No. 10774108
文摘The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects.The completely positive reduced dynamical map can be constructed in the Kraus representation.Quantum entanglement decays more slowly in the non-Markovian environment.The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel.It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.
基金Project(51509062)supported by the National Natural Science Foundation of ChinaProject(ZR2014EEP024)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(HIT.NSRIF.201727)supported by the Fundamental Research Funds for the Central Universities,China
文摘Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves.
基金Supported by the National Natural Science Foundations of China under Grant No. 10974016
文摘We analyze the classical and quantum correlation properties of the standard and so-called quasiclassical depolarizing channel with correlated noise and non-Markovian dephasing channel, specifically we use the quantum discord, entanglement, and measurement-induced disturbance (MID) to measure the quantum correlations. For the depolarizing channel, we find that the memory effect has more influence on the MID and quantum discord than entanglement. For the dephasing channel, we show that the non-Markovian dephasing channel is more robust than Markovian dephasing channel against deeoherence. We also find that at first MID and quantum discord take different values, and then after a specific time they will take almost the same value and both decay monotonically in the same way.