To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 n...In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.展开更多
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
文摘In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.