In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with stron...In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with strong hydrophilic surfactant added is a new type of penetration enhancer.展开更多
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample pre...The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.展开更多
Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars wi...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stabil...Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stability of the lithium metal batteries(LMBs).Nonetheless,EBEs still face the challenge of oxidative decomposition under high voltage,which will corrode the structure of cathodes,destroy the stability of the electrode−electrolyte interface,and even cause safety risks.Herein,the types and challenges of EBEs are reviewed,the strategies for improving the high voltage stability of EBEs and constructing stable electrode−electrolyte interfaces are discussed in detail.Finally,the future perspectives and potential directions for composition optimization of EBEs and electrolyte−electrode interface regulation of high-voltage LMBs are explored.展开更多
[ Objective] The aim of this study was to provide a theoretical basis for population and application of Chinese herbal feed additive in the rex rabbit breeding. [ Methyl] 108 weaned -rex rabbits aged 40 days were divi...[ Objective] The aim of this study was to provide a theoretical basis for population and application of Chinese herbal feed additive in the rex rabbit breeding. [ Methyl] 108 weaned -rex rabbits aged 40 days were divided into three groups with thirty -six each group. Group A were fed basal diet, while group B were fed basal diet supplemented with 0.3% Chinese herbal feed additive and group C were fed basal diet supplemented with 0.4% Chinese herbal feed additive. The meat quality indexes were measured when feeding to 150 age in days. [ Result] There was significant difference among pH value, water loss rate, storing loss rate and crude protein content in each group (P〈0.05), but no significant difference was found in tenderness, cooking percentage, moisture content and crude fat content ( P 〉 0.05). The total content of ami- no acids, essential amino acids and semi essential amino acids as well as main delicious amino acids was highest in group C accounting for 23.84%, 11.47% and 8.32% respectively, next came group B accounting for 20.94%, 10.64% and 6.81% respectively, and lowest in group C ( control group) accounting for 19.06%, 9.61% and 6.46% respectively. [ Conclusion] The Chinese herbal feed additive can improve meat quality of rex rabbit the best addition of 0.4%.展开更多
Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to ...Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to the difference of the electric potential in the inner electric field near the junction,pointing from n toward p. n-Ag3PO4/p-Ag2CO3 p–n heterojunction composites are prepared through a facile coprecipitation process. The obtained Ag3PO4/Ag2CO3 p–n heterojunctions exhibit excellent photocatalytic performance in the removal of rhodamine B(RhB) compared with Ag3PO4 and Ag2CO3. The 40%-Ag3PO4/Ag2CO3 composite photocatalyst(40 mol% Ag3PO4 and 60 mol% Ag2CO3) exhibits the best photocatalytic activity under visible light,demonstrating the ability to completely degrade RhB within 15 min. Transient photovoltage characterization and an active species trapping experiment further indicate that the formation of a p–n heterojunction structure can greatly enhance the separation efficiency of photogenerated carriers and produce more free h+active species,which is the predominant contributor for RhB removal.展开更多
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
This report studied on pharmaceutical characteristics of the stealth liposome containing dau-norubicin (DNR). The shape, size, entrapment efficiency and stability of the daunorubicin stealth liposomes (DNRSL) were exa...This report studied on pharmaceutical characteristics of the stealth liposome containing dau-norubicin (DNR). The shape, size, entrapment efficiency and stability of the daunorubicin stealth liposomes (DNRSL) were examined. Visible spectrophotometry and the HPLC method were established for determination of the DNR in the DNRSL. The release of DNR from DNRSL in HBS (pH 7.5) and rat serum at 37 oC were examined. The results showed that the DNRSL had high entrapment efficiency (>85%), small size and slow release.展开更多
In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant...In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant, condensation nucleus ma- terial and antifreeze, dispersant, thickener and defoamer were screened and assem- bled to develop a thermal fog sedimentation stabilizer in this study, thereby provid- ing technical support for application and promotion of thermal spraying technology in pest and disease control in crops.展开更多
At Baiyin dairy farm, the Chinese herbal additive was added into feed which was then fed to dairy cows from August to October, 2014, and the changes in milk production and quality were observed. The test showed that t...At Baiyin dairy farm, the Chinese herbal additive was added into feed which was then fed to dairy cows from August to October, 2014, and the changes in milk production and quality were observed. The test showed that the additive added into the feed had obvious milk-increasing effect, the milk production was im- proved by 12.67%-17.26%, and the milk quality was improved. The additive has the effects of preventing miscarriage, expelling parasite and preventing diseases. The nutritional components in the feed additive were determined, and the results showed that the contents of protein, crude fat, Ca and P in the additive were 12.29%, 2.66%, 1.8% and 0.22%, respectively.展开更多
The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore si...The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.展开更多
Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativ...Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativus L.) planted in two levels (CdCl2·2.5H2O mg/kg and 4 mg/kg) of Cd-contaminated soil in which different concentrations of complex amendments (0, 600, 900, 1 200 mg/kg) were added. The results showed that when applying 1 200 mg/kg amendment, the organic mat-ter content, bacterial number and total microorganism amounts in 2 and 4 mg/kg Cd-contaminated soil increased by 23.17% and 32.89%, 87.61% and 96.02%, 59.95% and 55.81%, respectively. When 900 mg/kg amendment was applied, the fungi number in 2 and 4 mg/kg Cd-contaminated soil reached the maximum, in-creasing by 137.50% and 106.72% respectively. However, applying the amendment had no significant effect on the pH of soil. The security and nutritional quality of cu-cumber fruits were obviously improved comparing with control. The Cd content in cucumber fruits decreased by 31.40% and 24.35%, respectively, in 2 and 4 mg/kg Cd-contaminated soil. Furthermore, Vc, soluble sugar and soluble fixation content in cucumber fruits of 2 and 4 mg/kg Cd-contaminated soil went up by 25.00% and 91.42%, 37.03% and 27.06%, 14.29% and 58.80%, respectively. lt was indicated that the complex amendment can obviously improve the quality of cucumber fruit and thus can be used in the in situ_repair of Cd-contaminated soil.展开更多
Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ...Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.展开更多
During 2012-2014,field trials were carried out in Huili County,Dechang County and Mianning County of Liangshan Yi Autonomous Prefecture to investigate effects of tobacco-dedicated plant nutrition regulators on yield a...During 2012-2014,field trials were carried out in Huili County,Dechang County and Mianning County of Liangshan Yi Autonomous Prefecture to investigate effects of tobacco-dedicated plant nutrition regulators on yield and quality of fluecured tobacco leaves,aiming at providing reference for tobacco production.According to the results,in tobacco fields applied with tobacco-dedicated plant nutrition regulators,growth period of tobacco was shortened compared with control group;botanical characters(plant height,stem girth,the maximum leaf length,the maximum leaf width,internode length and leaf number) were superior to control group;after application of tobacco-dedicated plant nutrition regulators,yield,output value and the proportion of high-grade and middle-grade leaves were significantly improved compared with control group;moreover,flue-cured tobacco leaves exhibited more coordinated chemical composition.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalys...A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.展开更多
The preservation effects of 9 kinds of preservatives were discussed in this paper. And their effects on ornamental quality of cut Ranunculus asiaticus were in-vestigated. The results showed arranging cut Ranunculus as...The preservation effects of 9 kinds of preservatives were discussed in this paper. And their effects on ornamental quality of cut Ranunculus asiaticus were in-vestigated. The results showed arranging cut Ranunculus asiaticus in a vase fil ed with 200 mg/L 8-HQC+1% sucrose+75 mg/L AgNO3 would effectively slow down the weight loss, promote the rise of flower diameter, prolong life and maintain the chlorophyl and anthocyanin content of cut flower. The preservative had a good fresh-keeping effect and was suitable for promotion in actual production.展开更多
文摘In this article different types of ultradeformable liposomes were designed and the properties of transdermal delivery were studied with sodium salicylate as model drug. These results showed that liposomes with strong hydrophilic surfactant added is a new type of penetration enhancer.
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
文摘The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金financial support from the Natural Science Foundation of Hunan Province,China (No.2023JJ40759)the State Key Laboratory of Powder Metallurgy in Central South University,China。
文摘Ether-based solvents generally show better affinity for lithium metal,and thus ether-based electrolytes(EBEs)are more inclined to form a uniform and thin solid electrolyte interface(SEI),ensuring the long cycle stability of the lithium metal batteries(LMBs).Nonetheless,EBEs still face the challenge of oxidative decomposition under high voltage,which will corrode the structure of cathodes,destroy the stability of the electrode−electrolyte interface,and even cause safety risks.Herein,the types and challenges of EBEs are reviewed,the strategies for improving the high voltage stability of EBEs and constructing stable electrode−electrolyte interfaces are discussed in detail.Finally,the future perspectives and potential directions for composition optimization of EBEs and electrolyte−electrode interface regulation of high-voltage LMBs are explored.
文摘[ Objective] The aim of this study was to provide a theoretical basis for population and application of Chinese herbal feed additive in the rex rabbit breeding. [ Methyl] 108 weaned -rex rabbits aged 40 days were divided into three groups with thirty -six each group. Group A were fed basal diet, while group B were fed basal diet supplemented with 0.3% Chinese herbal feed additive and group C were fed basal diet supplemented with 0.4% Chinese herbal feed additive. The meat quality indexes were measured when feeding to 150 age in days. [ Result] There was significant difference among pH value, water loss rate, storing loss rate and crude protein content in each group (P〈0.05), but no significant difference was found in tenderness, cooking percentage, moisture content and crude fat content ( P 〉 0.05). The total content of ami- no acids, essential amino acids and semi essential amino acids as well as main delicious amino acids was highest in group C accounting for 23.84%, 11.47% and 8.32% respectively, next came group B accounting for 20.94%, 10.64% and 6.81% respectively, and lowest in group C ( control group) accounting for 19.06%, 9.61% and 6.46% respectively. [ Conclusion] The Chinese herbal feed additive can improve meat quality of rex rabbit the best addition of 0.4%.
基金supported by the National Natural Science Foundation of China(2100705351302241)+1 种基金the Education Department of Henan Province(2012GGJS-174)Xuchang University Science Research Foundation(2015011)~~
文摘Formation of a p–n heterojunction rather than p-type or n-type semiconductors can enhance the separation of photogenerated electrons and holes and increase the quantum efficiency of photocatalytic reactions owing to the difference of the electric potential in the inner electric field near the junction,pointing from n toward p. n-Ag3PO4/p-Ag2CO3 p–n heterojunction composites are prepared through a facile coprecipitation process. The obtained Ag3PO4/Ag2CO3 p–n heterojunctions exhibit excellent photocatalytic performance in the removal of rhodamine B(RhB) compared with Ag3PO4 and Ag2CO3. The 40%-Ag3PO4/Ag2CO3 composite photocatalyst(40 mol% Ag3PO4 and 60 mol% Ag2CO3) exhibits the best photocatalytic activity under visible light,demonstrating the ability to completely degrade RhB within 15 min. Transient photovoltage characterization and an active species trapping experiment further indicate that the formation of a p–n heterojunction structure can greatly enhance the separation efficiency of photogenerated carriers and produce more free h+active species,which is the predominant contributor for RhB removal.
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
文摘This report studied on pharmaceutical characteristics of the stealth liposome containing dau-norubicin (DNR). The shape, size, entrapment efficiency and stability of the daunorubicin stealth liposomes (DNRSL) were examined. Visible spectrophotometry and the HPLC method were established for determination of the DNR in the DNRSL. The release of DNR from DNRSL in HBS (pH 7.5) and rat serum at 37 oC were examined. The results showed that the DNRSL had high entrapment efficiency (>85%), small size and slow release.
基金Supported by Anhui Agricultural Science and Technology Innovation Fund(16A1132)Science and Technology Major Project of Anhui Province(15CZZ03132)Special Fund for Talent Development in Anhui Province(13C1109)~~
文摘In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant, condensation nucleus ma- terial and antifreeze, dispersant, thickener and defoamer were screened and assem- bled to develop a thermal fog sedimentation stabilizer in this study, thereby provid- ing technical support for application and promotion of thermal spraying technology in pest and disease control in crops.
文摘At Baiyin dairy farm, the Chinese herbal additive was added into feed which was then fed to dairy cows from August to October, 2014, and the changes in milk production and quality were observed. The test showed that the additive added into the feed had obvious milk-increasing effect, the milk production was im- proved by 12.67%-17.26%, and the milk quality was improved. The additive has the effects of preventing miscarriage, expelling parasite and preventing diseases. The nutritional components in the feed additive were determined, and the results showed that the contents of protein, crude fat, Ca and P in the additive were 12.29%, 2.66%, 1.8% and 0.22%, respectively.
文摘The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.
基金Supported by Beijing Municipal Commission of Rural Affairs Science&Technology Program(20120129)Beijing Academy of Agricultural and Forestry Sciences Leafy Vegetable Innovation Team Program(BAIC07-2016)~~
文摘Pot experiments were carried out to investigate the effects of a complex amendment on the soil organic matter content, pH, microbial quantity, Cd uptake and nutritional quality of the fruit of cucumber (Cucumis sativus L.) planted in two levels (CdCl2·2.5H2O mg/kg and 4 mg/kg) of Cd-contaminated soil in which different concentrations of complex amendments (0, 600, 900, 1 200 mg/kg) were added. The results showed that when applying 1 200 mg/kg amendment, the organic mat-ter content, bacterial number and total microorganism amounts in 2 and 4 mg/kg Cd-contaminated soil increased by 23.17% and 32.89%, 87.61% and 96.02%, 59.95% and 55.81%, respectively. When 900 mg/kg amendment was applied, the fungi number in 2 and 4 mg/kg Cd-contaminated soil reached the maximum, in-creasing by 137.50% and 106.72% respectively. However, applying the amendment had no significant effect on the pH of soil. The security and nutritional quality of cu-cumber fruits were obviously improved comparing with control. The Cd content in cucumber fruits decreased by 31.40% and 24.35%, respectively, in 2 and 4 mg/kg Cd-contaminated soil. Furthermore, Vc, soluble sugar and soluble fixation content in cucumber fruits of 2 and 4 mg/kg Cd-contaminated soil went up by 25.00% and 91.42%, 37.03% and 27.06%, 14.29% and 58.80%, respectively. lt was indicated that the complex amendment can obviously improve the quality of cucumber fruit and thus can be used in the in situ_repair of Cd-contaminated soil.
基金supported by the National Natural Science Foundation of China (51672089)the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098)+1 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7)the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04)~~
文摘Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.
文摘During 2012-2014,field trials were carried out in Huili County,Dechang County and Mianning County of Liangshan Yi Autonomous Prefecture to investigate effects of tobacco-dedicated plant nutrition regulators on yield and quality of fluecured tobacco leaves,aiming at providing reference for tobacco production.According to the results,in tobacco fields applied with tobacco-dedicated plant nutrition regulators,growth period of tobacco was shortened compared with control group;botanical characters(plant height,stem girth,the maximum leaf length,the maximum leaf width,internode length and leaf number) were superior to control group;after application of tobacco-dedicated plant nutrition regulators,yield,output value and the proportion of high-grade and middle-grade leaves were significantly improved compared with control group;moreover,flue-cured tobacco leaves exhibited more coordinated chemical composition.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
基金This work was supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.
基金Supported by Jiangsu Province 333 High-level Personnel Training Project~~
文摘The preservation effects of 9 kinds of preservatives were discussed in this paper. And their effects on ornamental quality of cut Ranunculus asiaticus were in-vestigated. The results showed arranging cut Ranunculus asiaticus in a vase fil ed with 200 mg/L 8-HQC+1% sucrose+75 mg/L AgNO3 would effectively slow down the weight loss, promote the rise of flower diameter, prolong life and maintain the chlorophyl and anthocyanin content of cut flower. The preservative had a good fresh-keeping effect and was suitable for promotion in actual production.