期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
“超级纤维”——碳纳米管
1
作者 于丽萍 《广西化纤通讯》 2001年第2期48-49,共2页
关键词 纳米材料 “超级纤维” 纳米纤维 碳纳米管
下载PDF
Microbial Removal from Secondary Treated Wastewater Using a Hybrid System of Ultrafiltration and Reverse Osmosis 被引量:1
2
作者 Jehad Abbadi Rinad Saleh +5 位作者 Sameh Nusseibeh Muhannad Qurie Mustafa Khamis Rafik Karaman LauraScrano Sabino Aurelio Bufo 《Journal of Environmental Science and Engineering(A)》 2012年第7期853-869,共17页
The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me... The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity. 展开更多
关键词 Wastewater treatment microbial load removal ULTRAFILTRATION reverse osmosis filtration technology microbial fouling.
下载PDF
Electrochemical performance of interfacially polymerized polyaniline nanofibres as electrode materials for non-aqueous redox supercapacitors 被引量:2
3
作者 李劼 方静 +3 位作者 崔沐 卢海 张治安 赖延清 《Journal of Central South University》 SCIE EI CAS 2011年第1期78-82,共5页
H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP... H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability. 展开更多
关键词 polyaniline nanofibre redox supercapacitor interfacial polymerization lithium salt doping
下载PDF
Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes 被引量:14
4
作者 Henghui Xu Xianluo Hu Yongming Sun Huiling Yang Xiaoxiao Liu Yunhui Huang 《Nano Research》 SCIE EI CAS CSCD 2015年第4期1148-1158,共11页
A novel all-solid-state, coaxial, fiber-shaped asymmetric supercapacitor has been fabricated by wrapping a conducting carbon paper on a MnO2-modified nanoporous gold wire. This energy wire exhibits high capacitance of... A novel all-solid-state, coaxial, fiber-shaped asymmetric supercapacitor has been fabricated by wrapping a conducting carbon paper on a MnO2-modified nanoporous gold wire. This energy wire exhibits high capacitance of 12 mF.cm^-2 and energy density of 5.4 μW.h.cm^-2 with excellent cycling stability. Hierarchical nanostructures and coaxial architectural design facilitate effective contacts between the two core@sheath electrodes and active layers with high flexibility and high performance. This work provides the first example of coaxial fiber- shaped asymmetric supercapacitors with an operation voltage of 1.8 V, and holds great potential for future flexible electronic devices. 展开更多
关键词 ALL-SOLID-STATE energy storage flexible device hierarchical nanostructure SUPERCAPACITORS
原文传递
Amphiphilic core-sheath structured composite fiber for comprehensively performed supercapacitor 被引量:7
5
作者 Xuemei Fu Zhuoer Li +6 位作者 Limin Xu Meng Liao Hao Sun Songlin Xie Xuemei Sun Bingjie Wang Huisheng Peng 《Science China Materials》 SCIE EI CSCD 2019年第7期955-964,共10页
As an im portant branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and e... As an im portant branch of fiber-shaped energy storage devices, the fiber-shaped supercapacitor has been widely studied recently. However, it remains challenging to simultaneously achieve fast electron transport and excellent ion accessibility in one single fiber electrode of the fibershaped supercapacitor. Herein, a novel family of amphiphilic core-sheath structured carbon nanotube composite fibers has been developed and applied to the fiber-shaped supercapacitor to address the above challenge. The polyaniline-modified hydrophilic sheath of the composite fiber electrode effectively enhanced the electrochemical property via advancing ion accessibility, while Au-deposited hydrophobic core demonstrated improved electrical conductivity by fast electron supply. On the basis of a synergistic effect, a remarkable specific capacitance of 324 F cm^-3 at 0.5 A cm^-3 and greatly enhanced rate performance were achieved, i.e” a 79% retention (256 F cm 3) at 50 A cm^-3. The obtained fiber-shaped supercapacitor finally displayed remarkable energy and power densities of 7.2 mW h cm 3 and 10 W cm^-3, respectively. The strategy developed herein also presents a general pathway towards novel fiber electrodes for high-performance wearable devices. 展开更多
关键词 hyd rop hobicity hyd rop hilicity am phiphilic coresheath SUPERCAPACITOR electron tran sport ion accessibility
原文传递
An integrated nanocarbon–cellulose membrane for solid-state supercapacitors 被引量:1
6
作者 Huabo Liu Yuheng Tian +1 位作者 Rose Amal Da-Wei Wang 《Science Bulletin》 SCIE EI CAS CSCD 2016年第5期368-377,共10页
In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water... In this work, we demonstrate the assembly of oxidised carbon nanohybrids(o CNHs) with a commercial cellulose membrane for solid-state supercapacitors. The o CNHs–cellulose membranes were prepared by filtering a water dispersion of o CNHs through the cellulose membrane. The o CNHs were derived from carbon nanotubes via a modified Hummer's method and contained both closed tubes and unzipped tubes, which indicated a hybrid geometrical structure. The solid-state supercapacitor based on the o CNHs–cellulose membranes showed a high areal capacitance of *75 m F/cm^2 at a low scan rate(5 m V/s)and excellent stability for 1,000 cycles. 展开更多
关键词 Solid-state supercapacitors Carbon nanotubes MEMBRANE
原文传递
Activated pyrolysed bacterial cellulose as electrodes for supercapacitors 被引量:3
7
作者 Xiangjun Wang Debin Kong +2 位作者 Bin Wang Yan Song Linjie Zhi 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第6期713-718,共6页
In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacte... In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose(APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose. 展开更多
关键词 bacterial cellulose PYROLYSIS ACTIVATION SUPERCAPACITOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部