In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacte...In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose(APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose.展开更多
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (21173057, 51425302)the Chinese Academy of Sciences.
文摘In this paper, the bacterial celluloses(BCs) were pyrolysed in nitrogen and then activated by KOH to form a porous three- dimension-network electrode material for supercapacitor applications. Activated pyrolysed bacterial cellulose(APBC) samples with enlarged specific surface area and enhanced specific capacitances were obtained. In order to optimize electrochemical properties, APBC samples with different alkali-to-carbon ratios of 1, 2 and 3 were tested in two electrodes symmetrical capacitors. The optimized APBC sample holds the highest specific capacitance of 241.8 F/g, and the energy density of which is 5 times higher than that of PBC even at a current density of 5 A/g. This work presents a successful practice of preparing electrode material from environment-friendly biomass, bacterial cellulose.