The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi...The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.展开更多
The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The ef...The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.展开更多
The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(...The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.展开更多
Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and ...Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.展开更多
An integrated coal pyrolysis process with iron ore reduction is proposed in this article. As the first step, iron oxide reduction is studied in a fixed bed reactor using simulated coal pyrolysis gas with benzene as a ...An integrated coal pyrolysis process with iron ore reduction is proposed in this article. As the first step, iron oxide reduction is studied in a fixed bed reactor using simulated coal pyrolysis gas with benzene as a model tar compound. Variables such as reduction temperature, reduction time and benzene concentration are studied. The carbon deposition of benzene results in the retarded iron reduction at low temperatures. At high temperatures over800 °C, the presence of benzene in the gas can promote iron reduction. The metallization can reach up to 99% in20 min at 900 °C in the presence of benzene. Significant increases of hydrogen and CO/CO2 ratio are observed in the gas. It is indicated that iron reduction is accompanied by the reforming and decomposition of benzene. The degree of metallization and reduction increases with the increasing benzene concentration. Iron oxide can nearly completely be converted into cementite with benzene present in the gas under the experimental conditions. No sintering is found in the reduced sample with benzene in the gas.展开更多
X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine w...X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine with V(Ⅲ)to form VF_(6)^(3-).The electrochemical behavior of V(Ⅲ)was evaluated under condition of the molar concentration ratio of F−to Vn+(α)equal to 0:1,1:1,2:1,5:1,20:1 and 50:1,respectively.The results showed that a new reduction step appeared:VF_(6)^(3-)→V^(2+),and the reduction mechanism of vanadium ions became more complicated.The metallic vanadium was deposited on the tungsten electrode at−2.90 V in the LiCl−KCl melts for 6 h,and the products were characterized by SEM−EDS.It was indicated that the particle size of the product decreased with adding fluoride ions for the forming of the coordination compound VF_(6)^(3-).展开更多
A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lea...A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lead acid batteries(LABs).The feasibility of this process was firstly assessed based on thermodynamics fundamentals.The electrochemical behavior of Pb(II)on a tungsten electrode in the eutectic NaCl−KCl melts at 700℃ was then investigated in detail by transient electrochemical techniques.The results indicated that the reduction reaction of Pb(II)in NaCl−KCl melts was a one-step process exchanging two electrons,and it was determined to be a quasi-reversible diffusion-controlled process.Finally,potentiostatic electrolysis was carried out at−0.6 V(vs Ag/AgCl)in the NaCl−KCl−PbCl2 melts,and the obtained cathodic product was identified as pure Pb by X-ray diffraction analysis.This investigation demonstrated that it is practically feasible to produce pure Pb metal by electrochemical reduction of PbCl2 in eutectic NaCl−KCl melts,and has provided important fundamental for the further study on lead recovery from spent LABs via molten salt extraction process.展开更多
An electrochemical study on the redox behavior of indium in the eutectic LiCl-KCl system at 450 ℃ was carried out with the transient techniques of cyclic voltammetry and chronopotentiometry on an inert molybdenum ele...An electrochemical study on the redox behavior of indium in the eutectic LiCl-KCl system at 450 ℃ was carried out with the transient techniques of cyclic voltammetry and chronopotentiometry on an inert molybdenum electrode. The reduction of In(Ⅲ) was found to be a two-step process involving In(Ⅲ)/In(Ⅰ) and In(Ⅰ)/In couples at the potentials of about-0.4 and-0.8 V versus Ag/AgCl, respectively. The redox mechanism was further confirmed by the theoretical evaluation of the number of transferred electrons based on cyclic voltammetry and characterizations of the precipitates generated by the potentiostatic electrolysis. The diffusion coefficients of indium ions in the eutectic LiCl-KCl melt at 450 ℃ were estimated by cyclic voltammetry and chronopotentiometry. The results obtained through the two methods are in fair agreement, delivering an average diffusion coefficient of approximately 1.8×10^(-5)cm^(2)/s for In(Ⅲ), and 1.4×10^(-4)cm^(2)/s for In(Ⅰ).展开更多
A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibilit...A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibility of this technology was firstly estimated based on thermodynamic fundamentals.Subsequently,the electrochemical behavior of Zn^(2+)on tungsten electrode was investigated in molten NaCl-KCl eutectic at 973 K by many electrochemical transient methods.The results showed that the reduction of Zn^(2+)on tungsten electrode was found to be a one-step process exchanging two electrons with the initial reduction potential of-0.74 V(vs Ag/AgCl),and the electrode process was considered as quasi-reversible and controlled by diffusion.The diffusion coefficient of Zn^(2+)ions in the melts was determined in the order of 10^(-5)cm^(2)/s.Finally,the electrolytic preparation of zinc was carried out by potentiostatic electrolysis in molten NaCl-KCl-ZnCl_(2)eutectic at-1.6 V(vs Ag/AgCl).Spheroidic granular metal with silver-white luster was attained after electrolysis for 9.5 h,and identified as pure Zn.The present study confirms that it is practically feasible to extract pure zinc metal by direct electrolysis of ZnCl_(2)in molten NaCl-KCl eutectic,and provides a valuable theoretical reference for the efficient recovery of zinc from metallurgical dusts.展开更多
The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the...The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.展开更多
Color is an important tool for glass industry to let the product gain additional aesthetic and functional properties forced by the market demands. In this context, it is necessary to understand the color forming mecha...Color is an important tool for glass industry to let the product gain additional aesthetic and functional properties forced by the market demands. In this context, it is necessary to understand the color forming mechanism better in order to get target color and improve the yield. A detailed experimental study to investigate the relationship between the manganese content on color formation and the redox condition was carried out. All experiments were carried out at different level of iron and manganese oxides. Color parameters (dominant wavelength, brightness (%), purity (%) and L-a-b values) were examined for large interval of batch redoxes. In this paper, the results of above mentioned experimental studies were discussed together.展开更多
Reactive oxygen species (ROS) are continuously generated during aerobic metabolism and at moderate level. They play a role in redox signaling, but in significant concentration they cause oxidative damage and neurode...Reactive oxygen species (ROS) are continuously generated during aerobic metabolism and at moderate level. They play a role in redox signaling, but in significant concentration they cause oxidative damage and neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain the normal redox state in different types of neuron cells. In last decade it became clear that regular exercise beneficially affects brain function, and can play an important preventive and therapeutic role in stroke, Alzheimer, and Parkinson diseases. The effects of exercise appear to be very complex and could include neurogenesis via neurotrophic factors, increased capillariszation, decreased oxidative damage, and increased proteolyfic degradation by proteasome and neprilysin. Data from our and other laboratories indicate that exercise-induced modulation of ROS levels plays a role in the protein content and expression of brain-derived neurotrophic factor, tyrosinerelated kinase B (TrkB), and cAMP response element binding protein, resulting in better function and increased neurogenesis. Therefore, it appears that exercise-induced modulation of the redox state is an important means, by which exercise benefits brain function, increases the resistance against oxidative stress, facilitates recovery from oxidative stress, and attenuates age-associated decline in cognition.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investig...One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investigated by photographic technique under isothermal conditions. Experimental results show that swelling index of pellets is firstly increased then gradually decreased with increasing reduction time, while that is found to be an obvious decrease from 175 % to 30% with the variation of temperature from 900℃ to 1100℃. Results of XRD combined with SEM reveal that swelling behavior of pellets is decided by structure of newly formed metal iron grains. The formation and growth of fibers iron grains promote the increase in volume. Low temperature and low CO content are favored to the formation and orientated growth of metal iron grains in the one step process.展开更多
Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-...Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.展开更多
Defects in cerium oxide, especially oxygen va- cancies, play an essential role in its versatile applications and are efficiently preserved at ambient conditions in a non- equilibrium process. Herein, defective CeO2x w...Defects in cerium oxide, especially oxygen va- cancies, play an essential role in its versatile applications and are efficiently preserved at ambient conditions in a non- equilibrium process. Herein, defective CeO2x with hetero- geneous structure was synthesized by high-energy laser melt- ing, where a large amount of oxygen vacancies and Ce3~ could be introduced, leading to improved visible light absorption, narrowed bandgap and room temperature ferromagnetism. Moreover, this laser melted CeO2x exhibits significantly en- hanced low-temperature oxidation behaviors than the coun- terpart prepared by normal hydrogen-reduction. This unique redox performance could be attributed to the intragranular diffusion at the boundaries of assembled nanocrystallites. This method paves a new way for introducing unique multi-func- tions in oxide ceramics.展开更多
In this study,the electrochemical behavior of Pd(II)in nitric acid media was investigated using various electrochemical techniques.By analyzing the cyclic voltammogram of Pd(II)recorded at Pt electrode,a series of ele...In this study,the electrochemical behavior of Pd(II)in nitric acid media was investigated using various electrochemical techniques.By analyzing the cyclic voltammogram of Pd(II)recorded at Pt electrode,a series of electrochemical reactions associated with palladium were recognized,indicating that Pd(II)undergoes a single step two-electrons irreversible process.Electroreduction reaction of Pd(II)and auto-catalytic reactions of nitrous acid are supposed to play a leading role in low and high concentrations of nitric acid,respectively.Stirring could facilitate the reduction of Pd(II)in relatively low nitric acid concentration(3 mol/L).The value of charge transfer coefficient was determined to be 0.18 for the measurements at 298 K.The diffusion coefficient of Pd(II)increased from 1.89×10 8cm2/s at 288 K to 4.23×10 8cm2/s at 318 K,and the activation energy was calculated to be 21.5 kJ/mol.In electrowinning experiments,SEM images of palladium obtained by electrolysis reveal the dendrite growth in all cases,which is uniform all over the entire surface of Pt electrode.The recovery ratios of Pd at different nitric acid concentrations are high,and the faradic efficiency of electrolysis decreases with increasing the nitric acid concentration.When stirring was introduced during electrolysis,the electrodeposition rate of Pd increased substantially.展开更多
基金Project(52022019)supported by the National Natural Science Foundation of China。
文摘The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.
基金Projects(2013CB632601,2013CB632604)supported by the National Basic Research Program of ChinaProject(51125018)supported by the National Science Foundation for Distinguished Young Scholars of China+1 种基金Project(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,21106167,51104139)supported by the National Natural Science Foundation of China
文摘The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.
基金Project(2013CB632603)supported by the National Basic Research Program of ChinaProject(2015BAB19B02)supported by the National Key Technology R&D Program of ChinaProjects(51674084,51174051,51574082)supported by National Natural Science Foundation of China
文摘The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite(HCVTM)sinter were investigated in this work.The main characterization methods of X-ray fluorescence(XRF),X-ray diffraction(XRD),scanning electron microscope(SEM),and metallographic microscope were employed in this study.In this work,the reduction of HCVTM sinter with different temperature and basicity were experimented.The Fe,FeO,and TiO in reductive samples increase with increasing basicity and temperatures.The increase of basicity and temperature is favorable to the reduction of HCVTM sinter.The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter.The reduction degradation index(RDI)decreases while the reduction index(RI)increases with increasing basicity.The RI increases from 67.14%to 82.09%with increasing temperature from 1073 K to 1373 K.
基金Project(50725416) supported by National Natural Science Funds for Distinguished Young Scholars of China
文摘Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion.
基金Supported by the joint program of the National Natural Science of Foundation of China and the Shenhua Group Cooperation Limited(51174284)
文摘An integrated coal pyrolysis process with iron ore reduction is proposed in this article. As the first step, iron oxide reduction is studied in a fixed bed reactor using simulated coal pyrolysis gas with benzene as a model tar compound. Variables such as reduction temperature, reduction time and benzene concentration are studied. The carbon deposition of benzene results in the retarded iron reduction at low temperatures. At high temperatures over800 °C, the presence of benzene in the gas can promote iron reduction. The metallization can reach up to 99% in20 min at 900 °C in the presence of benzene. Significant increases of hydrogen and CO/CO2 ratio are observed in the gas. It is indicated that iron reduction is accompanied by the reforming and decomposition of benzene. The degree of metallization and reduction increases with the increasing benzene concentration. Iron oxide can nearly completely be converted into cementite with benzene present in the gas under the experimental conditions. No sintering is found in the reduced sample with benzene in the gas.
基金supports from the National Key Research and Development Program of China (No.2021YFC2901600)supported by the State Key Laboratory of Special Rare Metal Materials (No.SKL2020K004)。
文摘X-ray photoelectron spectroscopy(XPS)and Raman spectroscopy were used to analyze the complexes in LiCl−KCl eutectic salt containing VCl_(3) and KF.The additional fluoride ions would replace chloride ions and combine with V(Ⅲ)to form VF_(6)^(3-).The electrochemical behavior of V(Ⅲ)was evaluated under condition of the molar concentration ratio of F−to Vn+(α)equal to 0:1,1:1,2:1,5:1,20:1 and 50:1,respectively.The results showed that a new reduction step appeared:VF_(6)^(3-)→V^(2+),and the reduction mechanism of vanadium ions became more complicated.The metallic vanadium was deposited on the tungsten electrode at−2.90 V in the LiCl−KCl melts for 6 h,and the products were characterized by SEM−EDS.It was indicated that the particle size of the product decreased with adding fluoride ions for the forming of the coordination compound VF_(6)^(3-).
基金Project(gxyq2018012)supported by the Developing Program Foundation for the Excellent Youth Talents of Higher Education of Anhui Province,ChinaProject(SKF19-05)supported by Foundation of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling,ChinaProjects(51904003,U1703130)supported by the National Natural Science Foundation of China。
文摘A novel molten salt extraction process consisting of chlorination roasting and molten salt electrolysis was proposed to develop a more efficient and environmental friendly technology for recovering lead from spent lead acid batteries(LABs).The feasibility of this process was firstly assessed based on thermodynamics fundamentals.The electrochemical behavior of Pb(II)on a tungsten electrode in the eutectic NaCl−KCl melts at 700℃ was then investigated in detail by transient electrochemical techniques.The results indicated that the reduction reaction of Pb(II)in NaCl−KCl melts was a one-step process exchanging two electrons,and it was determined to be a quasi-reversible diffusion-controlled process.Finally,potentiostatic electrolysis was carried out at−0.6 V(vs Ag/AgCl)in the NaCl−KCl−PbCl2 melts,and the obtained cathodic product was identified as pure Pb by X-ray diffraction analysis.This investigation demonstrated that it is practically feasible to produce pure Pb metal by electrochemical reduction of PbCl2 in eutectic NaCl−KCl melts,and has provided important fundamental for the further study on lead recovery from spent LABs via molten salt extraction process.
基金the National Natural Science Foundation of China(Nos.51904003,U1703130,51704011)the China Postdoctoral Science Foundation(No.2019M651466)the Foundation of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling of China(Nos.SKF18-01,SKF19-05).
文摘An electrochemical study on the redox behavior of indium in the eutectic LiCl-KCl system at 450 ℃ was carried out with the transient techniques of cyclic voltammetry and chronopotentiometry on an inert molybdenum electrode. The reduction of In(Ⅲ) was found to be a two-step process involving In(Ⅲ)/In(Ⅰ) and In(Ⅰ)/In couples at the potentials of about-0.4 and-0.8 V versus Ag/AgCl, respectively. The redox mechanism was further confirmed by the theoretical evaluation of the number of transferred electrons based on cyclic voltammetry and characterizations of the precipitates generated by the potentiostatic electrolysis. The diffusion coefficients of indium ions in the eutectic LiCl-KCl melt at 450 ℃ were estimated by cyclic voltammetry and chronopotentiometry. The results obtained through the two methods are in fair agreement, delivering an average diffusion coefficient of approximately 1.8×10^(-5)cm^(2)/s for In(Ⅲ), and 1.4×10^(-4)cm^(2)/s for In(Ⅰ).
基金the financial support from the Natural Science Foundation of Anhui Province, China (No. 2008085ME170)the Anhui Special Support Plan, China (No. T000609)the National Natural Science Foundation of China (No. 51204002
文摘A process comprising selective chlorination and molten salt electrolysis was proposed to develop an efficient and environmental-friendly technology for zinc recovery from metallurgical dusts.The theoretical feasibility of this technology was firstly estimated based on thermodynamic fundamentals.Subsequently,the electrochemical behavior of Zn^(2+)on tungsten electrode was investigated in molten NaCl-KCl eutectic at 973 K by many electrochemical transient methods.The results showed that the reduction of Zn^(2+)on tungsten electrode was found to be a one-step process exchanging two electrons with the initial reduction potential of-0.74 V(vs Ag/AgCl),and the electrode process was considered as quasi-reversible and controlled by diffusion.The diffusion coefficient of Zn^(2+)ions in the melts was determined in the order of 10^(-5)cm^(2)/s.Finally,the electrolytic preparation of zinc was carried out by potentiostatic electrolysis in molten NaCl-KCl-ZnCl_(2)eutectic at-1.6 V(vs Ag/AgCl).Spheroidic granular metal with silver-white luster was attained after electrolysis for 9.5 h,and identified as pure Zn.The present study confirms that it is practically feasible to extract pure zinc metal by direct electrolysis of ZnCl_(2)in molten NaCl-KCl eutectic,and provides a valuable theoretical reference for the efficient recovery of zinc from metallurgical dusts.
基金Supported by the Provincial personnel training funds(kksy201352109)the National Natural Science Foundation of China(51374118)
文摘The modified Siemens process,which is the major process of producing polycrystalline silicon through current technologies,is a high temperature,slow,semi-batch process and the product is expensive primarily due to the large energy consumption.Therefore,the zinc reduction process,which can produce solar-grade silicon in a cost effective manner,should be redeveloped for these conditions.The SiCl2 generation ratio,which stands for the degree of the side reactions,can be decomposed to SiCl4 and ZnCl2 in gas phase zinc atmosphere in the exit where the temperature is very low.Therefore,the lower SiCl2 generation ratio is profitable with lower power consumption.Based on the thermodynamic data for the related pure substances,the relations of the SiCl2 generation ratio and pressure,temperature and the feed molar ratio(n(Zn)/n(SiCl4) are investigated and the graphs thereof are plotted.And the diagrams of Kpθ-T at standard atmosphere pressure have been plotted to account for the influence of temperature on the SiCl2 generation ratio.Furthermore,the diagram of Kpθ-T at different pressures have also been plotted to give an interpretation of the influence of pressure on the SiCl2 generation ratio.The results show that SiCl2 generation ratio increases with increasing temperature,and the higher pressure and excess gas phase zinc can restrict SiCl2 generation ratio.Finally,suitable operational conditions in the practical process of polycrystalline silicon manufacture by gas phase zinc reduction of SiCl4 have been established with 1200 K,0.2 MPa and the feed molar ratio(n(Zn) /n(SiCl4)) of 4 at the entrance.Under these conditions,SiCl2 generation ratio is very low,which indicates that the side reactions can be restricted and the energy consumption is reasonable.
文摘Color is an important tool for glass industry to let the product gain additional aesthetic and functional properties forced by the market demands. In this context, it is necessary to understand the color forming mechanism better in order to get target color and improve the yield. A detailed experimental study to investigate the relationship between the manganese content on color formation and the redox condition was carried out. All experiments were carried out at different level of iron and manganese oxides. Color parameters (dominant wavelength, brightness (%), purity (%) and L-a-b values) were examined for large interval of batch redoxes. In this paper, the results of above mentioned experimental studies were discussed together.
基金supported by Hungarian grants(gsl) from ETT 38388,TeT JAP13/02,OTKA(gs2)(K75702),TAMOP-4.2.2/B-10/1-2010-0013 awarded to Z.Radak
文摘Reactive oxygen species (ROS) are continuously generated during aerobic metabolism and at moderate level. They play a role in redox signaling, but in significant concentration they cause oxidative damage and neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain the normal redox state in different types of neuron cells. In last decade it became clear that regular exercise beneficially affects brain function, and can play an important preventive and therapeutic role in stroke, Alzheimer, and Parkinson diseases. The effects of exercise appear to be very complex and could include neurogenesis via neurotrophic factors, increased capillariszation, decreased oxidative damage, and increased proteolyfic degradation by proteasome and neprilysin. Data from our and other laboratories indicate that exercise-induced modulation of ROS levels plays a role in the protein content and expression of brain-derived neurotrophic factor, tyrosinerelated kinase B (TrkB), and cAMP response element binding protein, resulting in better function and increased neurogenesis. Therefore, it appears that exercise-induced modulation of the redox state is an important means, by which exercise benefits brain function, increases the resistance against oxidative stress, facilitates recovery from oxidative stress, and attenuates age-associated decline in cognition.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
基金Projects(51404213,51404214,51674225)supported by the National Natural Science Fundation of ChinaProject(1421324065)supported by the Development Fund for Outstanding Young Teachers of Zhengzhou University,China
文摘One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investigated by photographic technique under isothermal conditions. Experimental results show that swelling index of pellets is firstly increased then gradually decreased with increasing reduction time, while that is found to be an obvious decrease from 175 % to 30% with the variation of temperature from 900℃ to 1100℃. Results of XRD combined with SEM reveal that swelling behavior of pellets is decided by structure of newly formed metal iron grains. The formation and growth of fibers iron grains promote the increase in volume. Low temperature and low CO content are favored to the formation and orientated growth of metal iron grains in the one step process.
基金supported by the National Basic Research Program of China(2012CB932902,2011CB933700)the National Natural Science Foundation of China(21321062,21061120456)+1 种基金the Natural Science Foundation of Fujian Province of China(2012J06004)the Program for New Century Excellent Talents in University(NCET-12-0318)
文摘Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode.
基金supported by the National Natural Science Foundation of China(51272124 and U1605243)
文摘Defects in cerium oxide, especially oxygen va- cancies, play an essential role in its versatile applications and are efficiently preserved at ambient conditions in a non- equilibrium process. Herein, defective CeO2x with hetero- geneous structure was synthesized by high-energy laser melt- ing, where a large amount of oxygen vacancies and Ce3~ could be introduced, leading to improved visible light absorption, narrowed bandgap and room temperature ferromagnetism. Moreover, this laser melted CeO2x exhibits significantly en- hanced low-temperature oxidation behaviors than the coun- terpart prepared by normal hydrogen-reduction. This unique redox performance could be attributed to the intragranular diffusion at the boundaries of assembled nanocrystallites. This method paves a new way for introducing unique multi-func- tions in oxide ceramics.
基金supported by the National Natural Science Foundation of China(91026019,91126006)
文摘In this study,the electrochemical behavior of Pd(II)in nitric acid media was investigated using various electrochemical techniques.By analyzing the cyclic voltammogram of Pd(II)recorded at Pt electrode,a series of electrochemical reactions associated with palladium were recognized,indicating that Pd(II)undergoes a single step two-electrons irreversible process.Electroreduction reaction of Pd(II)and auto-catalytic reactions of nitrous acid are supposed to play a leading role in low and high concentrations of nitric acid,respectively.Stirring could facilitate the reduction of Pd(II)in relatively low nitric acid concentration(3 mol/L).The value of charge transfer coefficient was determined to be 0.18 for the measurements at 298 K.The diffusion coefficient of Pd(II)increased from 1.89×10 8cm2/s at 288 K to 4.23×10 8cm2/s at 318 K,and the activation energy was calculated to be 21.5 kJ/mol.In electrowinning experiments,SEM images of palladium obtained by electrolysis reveal the dendrite growth in all cases,which is uniform all over the entire surface of Pt electrode.The recovery ratios of Pd at different nitric acid concentrations are high,and the faradic efficiency of electrolysis decreases with increasing the nitric acid concentration.When stirring was introduced during electrolysis,the electrodeposition rate of Pd increased substantially.