Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an ai...Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.展开更多
The capacity to adapt to resource distributions by modulating the frequency of exploratory and exploitative behaviors is common across metazoans and is arguably a principal selective force in the evolution of cognitio...The capacity to adapt to resource distributions by modulating the frequency of exploratory and exploitative behaviors is common across metazoans and is arguably a principal selective force in the evolution of cognition. Here we (I) review recent work investigating behavioral and biological commonalities between external foraging in space and internal foraging over envi- ronments specified by cognitive representations, and (2) explore the implications of these commonalities for understanding the origins of the self. Behavioural commonalities include the capacity for what is known as area-restricted search in the ecological literature: this is search focussed around locations where resources have been found in the past, but moving away from locations where few resources arc found, and capable of producing movement pattems mimicking L6vy flights. Area-restricted search shares a neural basis across metazoans, and these biological commonalities in vertebrates suggest an evolutionary homology be- tween external and internal foraging. Internal foraging, and in particular a form we call embodied prospective foraging, makes available additional capacities for prediction based on search through a cognitive representation of the external environment, and allows predictions about outcomes of possible future actions. We demonstrate that cognitive systems that use embodied prospec- tive foraging require a primitive sense of self, needed to distinguish actual from simulated action. This relationship has implica- tions for understanding the evolution of autonoetic consciousness and self-awareness.展开更多
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No. 2015AA016002)the National Basic Research Program of China ("973" Program) (Grant No. 2014CB340600)
文摘Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.
文摘The capacity to adapt to resource distributions by modulating the frequency of exploratory and exploitative behaviors is common across metazoans and is arguably a principal selective force in the evolution of cognition. Here we (I) review recent work investigating behavioral and biological commonalities between external foraging in space and internal foraging over envi- ronments specified by cognitive representations, and (2) explore the implications of these commonalities for understanding the origins of the self. Behavioural commonalities include the capacity for what is known as area-restricted search in the ecological literature: this is search focussed around locations where resources have been found in the past, but moving away from locations where few resources arc found, and capable of producing movement pattems mimicking L6vy flights. Area-restricted search shares a neural basis across metazoans, and these biological commonalities in vertebrates suggest an evolutionary homology be- tween external and internal foraging. Internal foraging, and in particular a form we call embodied prospective foraging, makes available additional capacities for prediction based on search through a cognitive representation of the external environment, and allows predictions about outcomes of possible future actions. We demonstrate that cognitive systems that use embodied prospec- tive foraging require a primitive sense of self, needed to distinguish actual from simulated action. This relationship has implica- tions for understanding the evolution of autonoetic consciousness and self-awareness.