Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the fre...Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.展开更多
Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods ...Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.展开更多
The fabrication of smart films with reversible wettability enabled by the stimulus-induced morphology changes has attracted growing interest but remains a challenge. Here we report a smart film that can reversibly cha...The fabrication of smart films with reversible wettability enabled by the stimulus-induced morphology changes has attracted growing interest but remains a challenge. Here we report a smart film that can reversibly changes its wettability between transparent hydrophobicity to translucent superhydrophobicity through the humidity-induced wrinkling/de-wrinkling process.The film was fabricated by depositing hydrophobic SiO2 nanoparticles(NPs) on poly(acrylic acid)(PAA)/poly(allylamine hydrochloride)(PAH) films, followed by partially exfoliating the films from the underlying substrates. The partially exfoliated PAA/PAH film can reversibly wrinkle and de-wrinkle when being alternately subjected to humid and dry environments. The deposition of hydrophobic SiO2 NPs on the wrinkling PAA/PAH film does not hinder the humidity-enabled wrin-kling/de-wrinkling ability of the composite film. The hydrophobic SiO2 NPs and the underlying humidity-wrinkling PAA/PAH film enable the composite film to spontaneously change from hydrophobic and transparent to superhydrophobic and translucent with the rise of environmental humidity.展开更多
基金Supported by the Corn Heat-resisting Resources Exploitation and Chain Molecular Marker Development(cstc2015jcyj BX0112)the Screening and Breeding of Feeding Maize Varieties in the Hilly and Mountain Areas(cstc2016shms-ztzx80017)+5 种基金the Functional Corn Germplasm Renounces Precise Identification and Material Innovation(cstc-2016shms-ztzx80013)the Breeding of Maize CMS Materials(2013cstc-jbky-00565)the Screening and Creation of High-temperature and Drought Resisting Corn Materials(2013cstc-jbky-00564)the Creation and Application of Shade-tolerant Corn Germplasm(cstc2016shmszx0218)the Special Fund for Scientific and Technological Innovation of Social People’s Livelihood of Chongqing Municipality-Molecular Analysis of Corn Kernel Accumulated Amylose and Development and Application of Genetic Specific Markers(cstc2015shmszx80029)the Innovation of Fine Varieties of Chongqing Academy of Agricultural Sciences-Research and Application of the Combining Ability of High-efficient Retrospective Improved Corn(NKY-2016AB004)~~
文摘Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.
基金Supported by National Natural Science Foundation of China (30871382,30721063)National Basic Research Program of China (973 Program) (2005CB522405)Special Funds of State Key Laboratories (2060204)
文摘Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.
基金supported by the National Natural Science Foundation of China(21225419)
文摘The fabrication of smart films with reversible wettability enabled by the stimulus-induced morphology changes has attracted growing interest but remains a challenge. Here we report a smart film that can reversibly changes its wettability between transparent hydrophobicity to translucent superhydrophobicity through the humidity-induced wrinkling/de-wrinkling process.The film was fabricated by depositing hydrophobic SiO2 nanoparticles(NPs) on poly(acrylic acid)(PAA)/poly(allylamine hydrochloride)(PAH) films, followed by partially exfoliating the films from the underlying substrates. The partially exfoliated PAA/PAH film can reversibly wrinkle and de-wrinkle when being alternately subjected to humid and dry environments. The deposition of hydrophobic SiO2 NPs on the wrinkling PAA/PAH film does not hinder the humidity-enabled wrin-kling/de-wrinkling ability of the composite film. The hydrophobic SiO2 NPs and the underlying humidity-wrinkling PAA/PAH film enable the composite film to spontaneously change from hydrophobic and transparent to superhydrophobic and translucent with the rise of environmental humidity.