The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
Considering that the on-line measurement and automatic control of element component content(ECC) are difficult to perform in rare earth cascade extraction process, the ECC distribution profile is dynamically regulated...Considering that the on-line measurement and automatic control of element component content(ECC) are difficult to perform in rare earth cascade extraction process, the ECC distribution profile is dynamically regulated at all stages to assess the effect of product purity control. Focusing on the theory of countercurrent extraction, the technology parameters and pre-setting flow-rates during the extract process are designed. Under varying process parameters, a novel step by step model is also proposed for each stage to analyze the impact on the distribution profile change. Combining the mass balance model and ECC changing trend at the monitoring stage, the ECC distribution profile can be automatically regulated by dynamically compensating the related extract or scrubbing liquid flow-rate. To this end, the required product purity at the two outlets is achieved. Based on Wincc and Matlab dynamic simulators, a specific Pr/Nd cascade extraction process is used to illustrate and demonstrate the application of the present approach.展开更多
A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The ...A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.展开更多
The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized funct...The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.展开更多
Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving an...Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.展开更多
Within the model, a definition of novel saturation and dilution degree is presented. A novel expression of equilibrium constant is derived by including interactions between components to reversible processes running b...Within the model, a definition of novel saturation and dilution degree is presented. A novel expression of equilibrium constant is derived by including interactions between components to reversible processes running between the components particles under a dynamic equilibrium. For partition equilibria, three types of basic processes are proposed and corresponding partition isotherms were derived. The isotherms are applied to the components partition between two phases for main heterogenous systems types. For construction and prediction ternary phase diagrams, a new method, the Component Binding by Saturation Model (CBSM) method, is proposed. Applying the partition isotherms derived, new extraction, evaporation and adsorption isotherms are expressed. Directly, or after an approximation, from the new adsorption isotherms, well-known adsorption isotherms are obtained.展开更多
Szasz-type operators can be constructed by a Poisson process. The purpose of this paper is to derive the converse result in connection with Szasz-type operators by Steckin-Marchaud-type inequalities and new Ditzian mo...Szasz-type operators can be constructed by a Poisson process. The purpose of this paper is to derive the converse result in connection with Szasz-type operators by Steckin-Marchaud-type inequalities and new Ditzian modulus of continuity. The degree of approximation on deterministic signals is also given.展开更多
Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) control...Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) controller is proposed. The settings of the controller are valued by two criteria,the error between output and reference signals and control moves. An appropriate set of Pareto optimal setting of the PID controller is founded by analyzing the results of Pareto optimal surfaces for balancing the two criteria. A high order process with inverse response and dead time is used to illustrate the results of the proposed method. And the efficiency and robustness of the tuning method are evident compared with methods in recent literature.展开更多
To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied pha...To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.展开更多
Li-ion batteries are a key technology for multiple clean energy applications.In this study,Cu2O nanowires were obtained by the reduction of cupric acetate with pyrrole.The resulting Cu2O nanowires exhibited excellent ...Li-ion batteries are a key technology for multiple clean energy applications.In this study,Cu2O nanowires were obtained by the reduction of cupric acetate with pyrrole.The resulting Cu2O nanowires exhibited excellent reversible capacities of 470mAh g-1 at rate of 1 C after 100 cycles.The results show that the Cu2O nanowires had more capacity than materials previously reported.No fading was observed over 100 cycles of charging and discharging.The compound metal Cu and incorporation of the conducting polymer polypyrrole(PPy)improved the conductivity of Cu2O and enhanced the stability of the electrode during cycling.The results from this study imply that Cu2O nanowires with high capacity and good cycle retention could be excellent candidates as anode materials for Li-ion rechargeable batteries.展开更多
The entransy theory has been applied to the analyses of heat-work conversion systems. The physical meaning and the applications of work entransy are analyzed and discussed in this paper. Work entransy, which is clarif...The entransy theory has been applied to the analyses of heat-work conversion systems. The physical meaning and the applications of work entransy are analyzed and discussed in this paper. Work entransy, which is clarified to be a process dependent quantity, is not the entransy of work, but the system entransy change accompanying work transfer. The relationship between the work entransy and the output work is set up. When the application preconditions are satisfied, larger work entransy leads to larger output work. Entransy loss, which was proposed and applied to heat work conversion processes with irreversible heat transfer, is the net entransy flow into the system and the summation of work entransy and entransy dissipation. The application preconditions of entransy loss are also discussed.展开更多
An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic pro...An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.展开更多
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
基金Supported by the National Natural Science Foundation of China(51174091,61164013,61364013)
文摘Considering that the on-line measurement and automatic control of element component content(ECC) are difficult to perform in rare earth cascade extraction process, the ECC distribution profile is dynamically regulated at all stages to assess the effect of product purity control. Focusing on the theory of countercurrent extraction, the technology parameters and pre-setting flow-rates during the extract process are designed. Under varying process parameters, a novel step by step model is also proposed for each stage to analyze the impact on the distribution profile change. Combining the mass balance model and ECC changing trend at the monitoring stage, the ECC distribution profile can be automatically regulated by dynamically compensating the related extract or scrubbing liquid flow-rate. To this end, the required product purity at the two outlets is achieved. Based on Wincc and Matlab dynamic simulators, a specific Pr/Nd cascade extraction process is used to illustrate and demonstrate the application of the present approach.
基金Supported by the National Natural Science Foundation of China(21406124)
文摘A T-Q diagram based on entransy theory is applied to graphically and quantitatively describe the irreversibility of the heat transfer processes.The hot and cold composite curves can be obtained in the T-Q diagram.The entransy recovery and entransy dissipation that are affected by temperature differences can be obtained through the shaded area under the composite curves.The method for setting the energy target of the HENs in T-Q diagram based on entransy theory is proposed.A case study of the diesel oil hydrogenation unit is used to illustrate the application of the method.The results show that three different heat transfer temperature differences is 10 K,15 K and 20 K,and the entransy recovery is 5.498×10~7k W·K,5.377×10~7k W·K,5.257×10~7k W·K,respectively.And the entransy transfer efficiency is 92.29%,91.63%,90.99%.Thus,the energy-saving potential of the HENs is obtained by setting the energy target based on the entransy transfer efficiency.
文摘The inverse heat conduction method is one of methods to identify the casting simulation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newtonaphson iteration method. Moreover, the orthogonal experimental design was used to estimate the appropriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AlSiTMg sand mold casting and the temperature measurement experiment was done. The physical properties of sand mold and the interracial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.
文摘Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.
文摘Within the model, a definition of novel saturation and dilution degree is presented. A novel expression of equilibrium constant is derived by including interactions between components to reversible processes running between the components particles under a dynamic equilibrium. For partition equilibria, three types of basic processes are proposed and corresponding partition isotherms were derived. The isotherms are applied to the components partition between two phases for main heterogenous systems types. For construction and prediction ternary phase diagrams, a new method, the Component Binding by Saturation Model (CBSM) method, is proposed. Applying the partition isotherms derived, new extraction, evaporation and adsorption isotherms are expressed. Directly, or after an approximation, from the new adsorption isotherms, well-known adsorption isotherms are obtained.
基金Supported by National Natural Science Foundation of China (No.60872161)Natural Science Foundation of Tianjin (No. 08JCYBJC09600)
文摘Szasz-type operators can be constructed by a Poisson process. The purpose of this paper is to derive the converse result in connection with Szasz-type operators by Steckin-Marchaud-type inequalities and new Ditzian modulus of continuity. The degree of approximation on deterministic signals is also given.
基金National Natural Science Foundation of China (No.60504033)
文摘Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) controller is proposed. The settings of the controller are valued by two criteria,the error between output and reference signals and control moves. An appropriate set of Pareto optimal setting of the PID controller is founded by analyzing the results of Pareto optimal surfaces for balancing the two criteria. A high order process with inverse response and dead time is used to illustrate the results of the proposed method. And the efficiency and robustness of the tuning method are evident compared with methods in recent literature.
基金Project(CDJZR10210009) supported by Central College General Fund for Natural Science of Chongqing City,China
文摘To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.
基金supported by the National Natural Science Foundation of China (Grant No. 81270209)Shanghai Pujiang Program (Grant No. 11PJD011)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Medical-Engineering (Science) Cross-Research Fund of Shanghai Jiao Tong University (Grant No. YG2013MS20)
文摘Li-ion batteries are a key technology for multiple clean energy applications.In this study,Cu2O nanowires were obtained by the reduction of cupric acetate with pyrrole.The resulting Cu2O nanowires exhibited excellent reversible capacities of 470mAh g-1 at rate of 1 C after 100 cycles.The results show that the Cu2O nanowires had more capacity than materials previously reported.No fading was observed over 100 cycles of charging and discharging.The compound metal Cu and incorporation of the conducting polymer polypyrrole(PPy)improved the conductivity of Cu2O and enhanced the stability of the electrode during cycling.The results from this study imply that Cu2O nanowires with high capacity and good cycle retention could be excellent candidates as anode materials for Li-ion rechargeable batteries.
基金supported by the National Natural Science Foundation of China(Grant No.51376101)the Science Fund for Creative Research Groups(Grant No.51321002)
文摘The entransy theory has been applied to the analyses of heat-work conversion systems. The physical meaning and the applications of work entransy are analyzed and discussed in this paper. Work entransy, which is clarified to be a process dependent quantity, is not the entransy of work, but the system entransy change accompanying work transfer. The relationship between the work entransy and the output work is set up. When the application preconditions are satisfied, larger work entransy leads to larger output work. Entransy loss, which was proposed and applied to heat work conversion processes with irreversible heat transfer, is the net entransy flow into the system and the summation of work entransy and entransy dissipation. The application preconditions of entransy loss are also discussed.
基金the Portuguese Foundation for Science and Technology (FCT) for the given support to the grant SFRH/BPD/71686the project PTDC/AAC-AMB/103119/2008
文摘An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.