A query regarding the now commonly accepted epicentral location of the 1216 Mahu earthquake in Leibo County, Sichuan Province is proposed after examination of local historical records of earthquakes, field investigati...A query regarding the now commonly accepted epicentral location of the 1216 Mahu earthquake in Leibo County, Sichuan Province is proposed after examination of local historical records of earthquakes, field investigation of the Mahu barrier lake, study of geological environment for the earthquake and the available data then a relocation of the earthquake epicenter is suggested in the paper.展开更多
Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and a...Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.展开更多
文摘A query regarding the now commonly accepted epicentral location of the 1216 Mahu earthquake in Leibo County, Sichuan Province is proposed after examination of local historical records of earthquakes, field investigation of the Mahu barrier lake, study of geological environment for the earthquake and the available data then a relocation of the earthquake epicenter is suggested in the paper.
基金The Major State Basic Research Development of China,No.2015CB954101National Mountain Flood Disaster Investigation Project,No.SHZH-IWHR-57+2 种基金The National Science and Technology Basic Special Project,No.2011FY11040-2National Natural Science Foundation of China,No.41171332The Surveying and Mapping Geoinformation Nonprofit Specific Project,No.201512033
文摘Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.