Objective:To assess the psychometric properties of the Thai version of the Self-Care Self-Efficacy Scale version 3.0(SCSES-v3.0)in individuals with chronic illnesses.Although originally developed and tested in a Weste...Objective:To assess the psychometric properties of the Thai version of the Self-Care Self-Efficacy Scale version 3.0(SCSES-v3.0)in individuals with chronic illnesses.Although originally developed and tested in a Western context,its applicability in Asian populations,including Thailand,remains inadequately explored.Methods:Psychometric tests were guided by COSMIN principles.This included the translation of the English version into Thai based on the ISPOR framework.Nine nursing experts evaluated the content validity.Data were obtained from a multicenter cross-sectional study conducted between July and November 2022.This study included individuals with chronic conditions from 16 primary care centers in Thailand.We tested the structural validity using exploratory factor analysis(EFA)and confirmatory factor analysis(CFA),and concurrent validity in relation to the Self-Care of Chronic Illness Inventory version 4.c(SC-CII-v4.c).We tested the scale’s reliability with McDonald’s u,Cronbach’s a,and the intraclass correlation coefficient(ICC).Results:The Thai SCSES-v3.0 demonstrated excellent content validity(k¼1.00).Thefinal analysis included a total of 385 participants.The EFA with thefirst split-half subsample(n¼193)extracted a twofactor structure.One reflected SCSES for maintenance and monitoring behaviors and another captured SCSES for management behaviors(item 6e10).CFA with the second split-half subsample(n¼192)and the overall sample(n¼385)supported the scale’s two-factor model with high factor loadings.Each dimension and the overall SCSES-v3.0 positively correlated with each scale and the overall SC-CII-v4.c.McDonald’s u and Cronbach’s a(both ranged 0.91e0.94)and ICC(ranged 0.95e0.96),indicated excellent internal reliability and test-retest reliability,respectively.Conclusions:The identification of a valid and reliable two-factor model for the Thai SCSES-v3.0 renders it a valuable tool for clinicians and investigators,facilitating the assessment of self-efficacy in self-care across diverse contexts.展开更多
A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equat...A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equation is solved using the triangular potential well approximation. The carrier density thus obtained is included in the space charge density to obtain quantum carrier confinement effects in the modeling of thin-body devices. Due to the quantum effects, the first subband is higher than the conduction band edge, which is equivalent to the band gap widening. Thus, the barrier heights at the source and drain increase and the carrier concentration decreases as the drain current decreases. The drawback of the existing models,which cannot present an accurate prediction of the drain current because they mainly consider the effects of Schottky barrier lowering (SBL) due to image forces,is eliminated. Our research results suggest that for small nonnegative Schottky barrier (SB) heights,even for zero barrier height, the tunneling current also plays a role in the total on-state currents. Verification of the present model was carried out by the device numerical simulator-Silvaco and showed good agreement.展开更多
A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of ...A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of 350℃ without any special treatment on bonding surfaces.The reflectivities of the mirrors can be as high as 99 9%.A Si-based narrow band response InGaAs photodetector is successfully fabricated,with a quantum efficiency of 22 6% at the peak wavelength of 1 54μm,and a full width at half maximum of about 27nm.This method has a great potential for industry processes.展开更多
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their level...An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was develo...A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.展开更多
In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular netwo...In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.展开更多
The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was ...The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was extremely refined by dynamic recrystallization(DRC) during extrusion.With increasing Zn content,the DRC grains tended to grow up,at the same time,more second phase streamlines would be present,which restricted the further growing.During solution treatment,the DRC grains would rapidly grow up;however,higher Zn content could hinder the grain boundary expanding,which results in finer ultimate grains.MgZn2 dispersoid particles which are coherent with the matrix would precipitate from the supersaturated solid solution during the one-step aging process,and nano-sized GP zones formed during the pre-aging stage of the two-step aging provide a huge amount of effective nuclei for the MgZn2 phases formed in the second stage,which makes the MgZn2 particles much finer and more dispersed.The mechanical properties of as-extruded samples were not so sensitive to the variation of Zn content,the tensile strength fluctuates between 300 and 320 MPa,and the elongation maintains a high value between 11% and 14%.The strength of aged samples rises as a parabolic curve with increasing Zn content,specifically,the tensile strength of one-step aged samples rises from 278 to 374 MPa,and that of two-step aged ones rises from 284 to 378 MPa,yet the elongation of all aged samples is below 8%.When Zn content exceeds its solid solution limit in Mg-Zn system(6.2%,mass fraction),the strength rises slowly but the elongation deteriorates sharply,so a Mg-Zn-Mn alloy with 6% Zn possesses the best mechanical properties,that is,the tensile strengths after one-and two-step aging are 352 and 366 MPa,respectively,and the corresponding elongations are 7.98% and 5.2%,respectively.展开更多
[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilizati...[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilization in accordance with different cultivars. [Method] Field experiment was conducted to study on effects of different N fertilizers on yield, N absorption and use efficiency of Zhengdan 958 and Xundan 20, in order to learn the effect differences at different N fertilizer levels. [Result] After N was applied, yields of the two summer maize increased significantly. Zhengdan 958 achieved the highest in yield and proceeds at 12 051.18 kg/hm2 and 1 722.40 yuan/hm2, respectively in low N level. In contrast, Xundan 20 achieved the highest at 13 166.00 kg/hm2 and 1 343.92 yuan/hm2 in the above two aspects in high N level. Compared with Zhengdan 958, Xundan 20 increased by 9.90%, 5.20% and 12.00% in N levels of 0, 240, and 450 kg/hm2, respectively. When N fertilizers were applied, protein yield of Xundan 20 was significantly higher than that of Zhengdan 958, so that higher N fertilizers contributed higher protein yield for Xundan 20. In high N level, N efficiency, N-fertilizer utilization and partial productivity of Xundan 20 were significantly higher than that of Zhengdan 958. [Conclusion] Lower N-fertilizer was suitable for Zhengdan 958 and Xundan 20 would get a good harvest if more N-fertilizers were applied. The results provided references for reasonable N fertilization.展开更多
To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped ...To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped into polymer host polyspirobifluorene (Spiro) to allow radiative recombination of triplet excitons. The current and brightness characteristics of the devices are tested and the electroluminescent spectra are described. Both fluorescence and phosphorescence are ob- served,and an obvious increase in external quantum efficiency is realized compared to undoped devices when different phosphorescent dopant concentrations are tried. Thus,the phosphorescent emission from triplet excited states might be an effective way to increase the efficiency of OLEDs when the concentration of the phosphorescent dopant is properiy controlled.展开更多
On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In t...On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In this paper, we propose a new spatial and temporal encoding approach for generic on-chip global buses with repeaters that enables higher performance while reducing peak energy and average energy. The proposed encoding approach exploits the benefits of a temporal encoding circuit and spatial bus-invert coding techniques to simultaneously eliminate opposite transitions on adjacent wires and reduce the number of self-transitions and coupling-transitions. In the design process of applying encoding techniques for reduced bus delay and energy, we present a repeater insertion design methodology to determine the repeater size and inter-repeater bus length, which minimizes the total bus energy dissipation while satisfying target delay and slew-rate constraints. This methodology is employed to obtain optimal energy versus delay trade-offs under slew-rate constraints for various encoding techniques.展开更多
[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and...[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and low phosphorus (LP) conditions, and with Jimai 22 as control, genotypes with high P use efficiency and excellent yield traits were selected. [Result] Compared with NP treatment, 8 wheat yield-related traits, spike number per plant, thousand-grain weight plant height, spike length, fertile spikelet number per spike, grain number per spike, grain weight per plant and above-land weight per plant, and 3 P content traits, grain, straw and above-land P contents per plant decreased significantly under LP condition (P〈〈 0.05), while 3 P utilization efficiency traits, grain, straw and aboveground P utilization efficiencies increased obviously, indicating that low P stress would greatly reduce yield and P content of wheat at adult stage, but would remarkably improve P utilization efficiency. Correlation analysis showed that plant height, fertile spikelet number per spike and grain weight per plant and straw and above-land P concentrations were in significant positive correlation with 3 P content traits, grain, straw and above-land P contents per plant, and in significant negative correlation with 2 Putilization efficiency traits, straw and above-land P utilization efficiencies (P〈0.01), and could serve as indexes for preliminary rapid evaluation of P use efficiency. Under NP treatment, 17 genotypes with high P use efficiency were selected, and among them, Hanxuan H28, 2010 Pin 4891 and Zhoumai 28 showed grain weights per plant higher than Jimai 22 by 36.07%, 31.96% and 37.44%, respectively, and above-land P utilization efficiency higher than Jimai 22 by 49.34%, 49.42% and 33.05%, respectively; and under LP treatment, 10 genotypes with high P use efficiency were selected, and among them, Henong 826 showed grain weight per plant and above-land P utilization efficiency higher than Jimai 22 by 37.60% and 20.42%, respectively. Furthermore, Hanxuan H23, Hanxuan H28 and Xumai 856 were identified as genotypes with high P use efficiency under both NP and LP treatments. [Conclusion] This study provides good parent materials for breeding of varieties with high P use efficiency.展开更多
We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational...We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.展开更多
A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Amon...A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Among targets, the crucial ones are redundantly covered to ensure more reliable monitors. And the information collected by the above coverage solution can be transmitted to Sink by the connected data-gathering structure. A novel ant colony optimization (ACO) algorithm--improved-MMAS-ACS-hybrid algorithm (IMAH) is adopted to achieve the above metric. Based on the design of the heuristic factor, artificial ants can adaptively detect the coverage and energy status of sensor networks and find the low-energy-cost paths to keep the communication connectivity to Sink. By introducing the pheromone-judgment-factor and the evaluation function to the pheromone updating rule, the pheromone trail on the global-best solution is enhanced, while avoiding the premature stagnation. Finally, the energy efficiency set can be obtained with high coverage-efficiency to all targets and reliable connectivity to Sink and the lifetime of the connected coverage set is prolonged.展开更多
AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered i...AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered in this model. Then the two-dimensional conduction band and electron distribution, electron temperature characteristics, Id versus Vd and Id versus Vg, transfer characteristics and transconductance curves are obtained. Corresponding analysis and discussion based on the simulation results are subsequently given.展开更多
Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular pr...Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular properties and a class of chromanol analogs asI_(Ks) blockers. Results The cross-validated correlation coefficient q^2 values (0.698) and noncross-validated correlation coefficient r^2 values (0.701) proved a good conventional statisticalcorrelation. Conclusion The final SOMFA model has therefore good predictive activity for the furthermolecular design of chromanol I_(Ks) potassium channel blockers.展开更多
Aim and methods The study of three-dimensional quantitative structure-activity relationship (3D-QSAR) of DDPH and its derivatives has been performed using Apex-3D programme. Results The result indicates that substit...Aim and methods The study of three-dimensional quantitative structure-activity relationship (3D-QSAR) of DDPH and its derivatives has been performed using Apex-3D programme. Results The result indicates that substituents of para- and ortho-positions in phenyl ring of aryloxyalkylamine greatly influence the bioactivity. Conclusion The biophore model and 3D-QSAR equation help us not only further understand receptor-ligand interactions, but also design new compounds with better bioactivity.展开更多
[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and ut...[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.展开更多
Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carbo...Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carboxylic acids to study the relationship betweentheir structure and the affinity for the glycine site of the NMDA receptor. Result Hie coefficientsof cross-validation q^2 and non cross-validation r^2 for the model established by the study are0.744 and 0.993, respectively, the value of variance ratio F is 261.343, and standard error estimate(SE) is 0.039. Conclusion These values indicate that the CoMFA model may have a good prediction forthe activity of C-3 substituted 4, 6-dichloroin-dole-2-carboxylic acids. As a consequence, thepredicted activity values of new designed compounds supports our conclusion from the model.展开更多
基金The original study wasfinancially supported by Walailak University(grant number:WU65240,Year 2022).
文摘Objective:To assess the psychometric properties of the Thai version of the Self-Care Self-Efficacy Scale version 3.0(SCSES-v3.0)in individuals with chronic illnesses.Although originally developed and tested in a Western context,its applicability in Asian populations,including Thailand,remains inadequately explored.Methods:Psychometric tests were guided by COSMIN principles.This included the translation of the English version into Thai based on the ISPOR framework.Nine nursing experts evaluated the content validity.Data were obtained from a multicenter cross-sectional study conducted between July and November 2022.This study included individuals with chronic conditions from 16 primary care centers in Thailand.We tested the structural validity using exploratory factor analysis(EFA)and confirmatory factor analysis(CFA),and concurrent validity in relation to the Self-Care of Chronic Illness Inventory version 4.c(SC-CII-v4.c).We tested the scale’s reliability with McDonald’s u,Cronbach’s a,and the intraclass correlation coefficient(ICC).Results:The Thai SCSES-v3.0 demonstrated excellent content validity(k¼1.00).Thefinal analysis included a total of 385 participants.The EFA with thefirst split-half subsample(n¼193)extracted a twofactor structure.One reflected SCSES for maintenance and monitoring behaviors and another captured SCSES for management behaviors(item 6e10).CFA with the second split-half subsample(n¼192)and the overall sample(n¼385)supported the scale’s two-factor model with high factor loadings.Each dimension and the overall SCSES-v3.0 positively correlated with each scale and the overall SC-CII-v4.c.McDonald’s u and Cronbach’s a(both ranged 0.91e0.94)and ICC(ranged 0.95e0.96),indicated excellent internal reliability and test-retest reliability,respectively.Conclusions:The identification of a valid and reliable two-factor model for the Thai SCSES-v3.0 renders it a valuable tool for clinicians and investigators,facilitating the assessment of self-efficacy in self-care across diverse contexts.
文摘A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equation is solved using the triangular potential well approximation. The carrier density thus obtained is included in the space charge density to obtain quantum carrier confinement effects in the modeling of thin-body devices. Due to the quantum effects, the first subband is higher than the conduction band edge, which is equivalent to the band gap widening. Thus, the barrier heights at the source and drain increase and the carrier concentration decreases as the drain current decreases. The drawback of the existing models,which cannot present an accurate prediction of the drain current because they mainly consider the effects of Schottky barrier lowering (SBL) due to image forces,is eliminated. Our research results suggest that for small nonnegative Schottky barrier (SB) heights,even for zero barrier height, the tunneling current also plays a role in the total on-state currents. Verification of the present model was carried out by the device numerical simulator-Silvaco and showed good agreement.
文摘A novel bonding method using silicate gel as bonding medium is developed.High reflective SiO 2/Si mirrors deposited on silicon substrates by e-beam deposition are bonded to the active layers at a low temperature of 350℃ without any special treatment on bonding surfaces.The reflectivities of the mirrors can be as high as 99 9%.A Si-based narrow band response InGaAs photodetector is successfully fabricated,with a quantum efficiency of 22 6% at the peak wavelength of 1 54μm,and a full width at half maximum of about 27nm.This method has a great potential for industry processes.
基金The Natural Science Foundation of Jiangsu Province(NoBK2005409)
文摘An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks. The mechanism can ensure that all targets are fully covered corresponding to their levels of importance at minimum cost, and the ant colony optimization algorithm (ACO) is adopted to achieve the above metrics. Based on the novel design of heuristic factors, artificial ants can adaptively detect the energy status and coverage ability of sensor networks via local information. By introducing the evaluation function to global pheromone updating rule, the pheromone trail on the best solution is greatly enhanced, so that the convergence process of the algorithm is speed up. Finally, the optimal solution with a higher coverage- efficiency and a longer lifetime is obtained.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
基金Projects (90716005, 10802055, 10972153) supported by the National Natural Science Foundation of ChinaProject (2007021005) supported by the Natural Science Foundation of Shanxi Province, China+2 种基金Project supported by the Postdoctoral Science Foundation of ChinaProject supported by the Homecomings Foundation, ChinaProject supported by the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China
文摘A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.
基金The National Science and Technology Major Project(No.2013ZX03001032-004)the National High Technology Research and Development Program of China(863 Program)(No.2014AA01A702)+1 种基金Jiangsu Province Science and Technology Support Program(No.BE2012165)Foundation of Huawei Corp.Ltd
文摘In order to achieve higher system energy efficiency (EE),a new coordinated multipoint (CoMP)-transmission-based scheme selection energy saving (CTSES)algorithm is proposed for downlink homogeneous cellular networks.The problem is formulated as an optimization of maximizing system EE,under the constraints of the data rate requirement and the maximum transmit power.The problem is decomposed into power allocation and alternative scheme selection problems.Optimal power allocation is calculated for CoMP-JT (joint transmission)and CoMP-CS (coordinated scheduling) transmissions,and the scheme with higher EE is chosen. Since the optimal problem is a nonlinear fractional optimization problem for both CoMP transmission schemes, the problem is transformed into an equivalent problem using the parametric method. The optimal transmit power and optimal EE are obtained by an iteration algorithm in CoMP-JT and CoMP-CS schemes.Simulation results show that the proposed algorithm offers obvious energy-saving potential and outperforms the fixed CoMP transmission scheme.Under the condition of the same maximum transmit power limit,the empirical regularity of user distribution for scheme choice is presented, and using this regularity, the computational complexity can be reduced.
基金Project(2007CB613700)supported by the National Basic Research Program of ChinaProject(2007BAG06B04)supported by the National Science and Technology Pillar Program During the 11th Five-Year Plan Period,China+1 种基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(CDJXS10132202)supported by the Fundamental Research Funds for the Central Universities,China
文摘The roles of Zn content and thermo-mechanical treatment in affecting microstructures and mechanical properties of Mg-x%Zn-1%Mn(mass fraction,x=4,5,6,7,8,9) wrought Mg alloys were investigated.The microstructure was extremely refined by dynamic recrystallization(DRC) during extrusion.With increasing Zn content,the DRC grains tended to grow up,at the same time,more second phase streamlines would be present,which restricted the further growing.During solution treatment,the DRC grains would rapidly grow up;however,higher Zn content could hinder the grain boundary expanding,which results in finer ultimate grains.MgZn2 dispersoid particles which are coherent with the matrix would precipitate from the supersaturated solid solution during the one-step aging process,and nano-sized GP zones formed during the pre-aging stage of the two-step aging provide a huge amount of effective nuclei for the MgZn2 phases formed in the second stage,which makes the MgZn2 particles much finer and more dispersed.The mechanical properties of as-extruded samples were not so sensitive to the variation of Zn content,the tensile strength fluctuates between 300 and 320 MPa,and the elongation maintains a high value between 11% and 14%.The strength of aged samples rises as a parabolic curve with increasing Zn content,specifically,the tensile strength of one-step aged samples rises from 278 to 374 MPa,and that of two-step aged ones rises from 284 to 378 MPa,yet the elongation of all aged samples is below 8%.When Zn content exceeds its solid solution limit in Mg-Zn system(6.2%,mass fraction),the strength rises slowly but the elongation deteriorates sharply,so a Mg-Zn-Mn alloy with 6% Zn possesses the best mechanical properties,that is,the tensile strengths after one-and two-step aging are 352 and 366 MPa,respectively,and the corresponding elongations are 7.98% and 5.2%,respectively.
基金Supported by Cooperation project of International Plant Nutrition Institution(IPNI)(NMBF-HenanAU-2007)Special Fund for Construction of National Modern Maize Industrial Technology System(nycytx-02-17)~~
文摘[Objective] The aim was to study on effects of N fertilizer on yield, N absorption and utilization of different cultivars of super high-yielding summer maize, in order to provide reference for reasonable N fertilization in accordance with different cultivars. [Method] Field experiment was conducted to study on effects of different N fertilizers on yield, N absorption and use efficiency of Zhengdan 958 and Xundan 20, in order to learn the effect differences at different N fertilizer levels. [Result] After N was applied, yields of the two summer maize increased significantly. Zhengdan 958 achieved the highest in yield and proceeds at 12 051.18 kg/hm2 and 1 722.40 yuan/hm2, respectively in low N level. In contrast, Xundan 20 achieved the highest at 13 166.00 kg/hm2 and 1 343.92 yuan/hm2 in the above two aspects in high N level. Compared with Zhengdan 958, Xundan 20 increased by 9.90%, 5.20% and 12.00% in N levels of 0, 240, and 450 kg/hm2, respectively. When N fertilizers were applied, protein yield of Xundan 20 was significantly higher than that of Zhengdan 958, so that higher N fertilizers contributed higher protein yield for Xundan 20. In high N level, N efficiency, N-fertilizer utilization and partial productivity of Xundan 20 were significantly higher than that of Zhengdan 958. [Conclusion] Lower N-fertilizer was suitable for Zhengdan 958 and Xundan 20 would get a good harvest if more N-fertilizers were applied. The results provided references for reasonable N fertilization.
文摘To investigate effective means of improving the efficiency of organic light-emitting devices (OLEDs) by making full use of ,triplet emission, a phosphorescent material Pt (II) Octaethylporphine (PtOEP) is doped into polymer host polyspirobifluorene (Spiro) to allow radiative recombination of triplet excitons. The current and brightness characteristics of the devices are tested and the electroluminescent spectra are described. Both fluorescence and phosphorescence are ob- served,and an obvious increase in external quantum efficiency is realized compared to undoped devices when different phosphorescent dopant concentrations are tried. Thus,the phosphorescent emission from triplet excited states might be an effective way to increase the efficiency of OLEDs when the concentration of the phosphorescent dopant is properiy controlled.
文摘On-chip global buses in deep sub-micron designs consume significant amounts of energy and have large propagation delays. Thus, minimizing energy dissipation and propagation delay is an important design objective. In this paper, we propose a new spatial and temporal encoding approach for generic on-chip global buses with repeaters that enables higher performance while reducing peak energy and average energy. The proposed encoding approach exploits the benefits of a temporal encoding circuit and spatial bus-invert coding techniques to simultaneously eliminate opposite transitions on adjacent wires and reduce the number of self-transitions and coupling-transitions. In the design process of applying encoding techniques for reduced bus delay and energy, we present a repeater insertion design methodology to determine the repeater size and inter-repeater bus length, which minimizes the total bus energy dissipation while satisfying target delay and slew-rate constraints. This methodology is employed to obtain optimal energy versus delay trade-offs under slew-rate constraints for various encoding techniques.
基金Supported by Jinan Agricultural Science and Technology Innovation Project(201313,201404)Jinan Science and Technology Planning Project(201401103)~~
文摘[Objective] This study was conducted to select wheat varieties with high P use efficiency. [Method] A field experiment was carried out with 112 wheat germplasm varieties as experiment materials under normal (NP) and low phosphorus (LP) conditions, and with Jimai 22 as control, genotypes with high P use efficiency and excellent yield traits were selected. [Result] Compared with NP treatment, 8 wheat yield-related traits, spike number per plant, thousand-grain weight plant height, spike length, fertile spikelet number per spike, grain number per spike, grain weight per plant and above-land weight per plant, and 3 P content traits, grain, straw and above-land P contents per plant decreased significantly under LP condition (P〈〈 0.05), while 3 P utilization efficiency traits, grain, straw and aboveground P utilization efficiencies increased obviously, indicating that low P stress would greatly reduce yield and P content of wheat at adult stage, but would remarkably improve P utilization efficiency. Correlation analysis showed that plant height, fertile spikelet number per spike and grain weight per plant and straw and above-land P concentrations were in significant positive correlation with 3 P content traits, grain, straw and above-land P contents per plant, and in significant negative correlation with 2 Putilization efficiency traits, straw and above-land P utilization efficiencies (P〈0.01), and could serve as indexes for preliminary rapid evaluation of P use efficiency. Under NP treatment, 17 genotypes with high P use efficiency were selected, and among them, Hanxuan H28, 2010 Pin 4891 and Zhoumai 28 showed grain weights per plant higher than Jimai 22 by 36.07%, 31.96% and 37.44%, respectively, and above-land P utilization efficiency higher than Jimai 22 by 49.34%, 49.42% and 33.05%, respectively; and under LP treatment, 10 genotypes with high P use efficiency were selected, and among them, Henong 826 showed grain weight per plant and above-land P utilization efficiency higher than Jimai 22 by 37.60% and 20.42%, respectively. Furthermore, Hanxuan H23, Hanxuan H28 and Xumai 856 were identified as genotypes with high P use efficiency under both NP and LP treatments. [Conclusion] This study provides good parent materials for breeding of varieties with high P use efficiency.
文摘We investigate the binding energies of excitons in a strained (111)-oriented zinc-blende GaN/Al0.3 Ga0.7 N quantum well screened by the electron-hole (e-h) gas under hydrostatic pressure by combining a variational method and a selfconsistent procedure. A built-in electric field produced by the strain-induced piezoelectric polarization is considered in our calculations. The result indicates that the binding energies of excitons increase nearly linearly with pressure,even though the modification of strain with hydrostatic pressure is considered, and the influence of pressure is more apparent under higher e-h densities. It is also found that as the density of an e-h gas increases,the binding energies first increase slowly to a maximum and then decrease rapidly when the e-h density is larger than about 1 ×10^11 cm^-2. The excitonic binding energies increase obviously as the barrier thickness decreases due to the decrease of the built-in electric field.
文摘A heuristic metric is presented to achieve the optimal connected set covering problem (SCP) in sensor networks. The coverage solution with the energy efficiency can guarantee that all targets are fully covered. Among targets, the crucial ones are redundantly covered to ensure more reliable monitors. And the information collected by the above coverage solution can be transmitted to Sink by the connected data-gathering structure. A novel ant colony optimization (ACO) algorithm--improved-MMAS-ACS-hybrid algorithm (IMAH) is adopted to achieve the above metric. Based on the design of the heuristic factor, artificial ants can adaptively detect the coverage and energy status of sensor networks and find the low-energy-cost paths to keep the communication connectivity to Sink. By introducing the pheromone-judgment-factor and the evaluation function to the pheromone updating rule, the pheromone trail on the global-best solution is enhanced, while avoiding the premature stagnation. Finally, the energy efficiency set can be obtained with high coverage-efficiency to all targets and reliable connectivity to Sink and the lifetime of the connected coverage set is prolonged.
文摘AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered in this model. Then the two-dimensional conduction band and electron distribution, electron temperature characteristics, Id versus Vd and Id versus Vg, transfer characteristics and transconductance curves are obtained. Corresponding analysis and discussion based on the simulation results are subsequently given.
文摘Aim and Method A novel three-dimensional quantitative structure-activityrelationship (3D-QSAR) method, self-organizing molecular field analysis (SOMFA) , was used toinvestigate the correlation between the molecular properties and a class of chromanol analogs asI_(Ks) blockers. Results The cross-validated correlation coefficient q^2 values (0.698) and noncross-validated correlation coefficient r^2 values (0.701) proved a good conventional statisticalcorrelation. Conclusion The final SOMFA model has therefore good predictive activity for the furthermolecular design of chromanol I_(Ks) potassium channel blockers.
文摘Aim and methods The study of three-dimensional quantitative structure-activity relationship (3D-QSAR) of DDPH and its derivatives has been performed using Apex-3D programme. Results The result indicates that substituents of para- and ortho-positions in phenyl ring of aryloxyalkylamine greatly influence the bioactivity. Conclusion The biophore model and 3D-QSAR equation help us not only further understand receptor-ligand interactions, but also design new compounds with better bioactivity.
基金Supported by Construction of Southwestern Rice Innovation System,Science and Technology Project on Food Production (2006BAD02-A05)Agriculture Science Technology Achievement TransformationFund (2006GB2F000256)+2 种基金Sichuan Provincial Foundation for Lead-ers of Disciplines in ScienceProject of Rice Breeding Technology ofSichuanProgram Promoted by Sichuan Financial Administration~~
文摘[Objective] The study aimed at investigating the effects of different geographic sites,soil chemical characteristics and nitrogen application levels on nitrogen accumulation and distribution in different organs and utilization efficiency for mid-season hybrid rice.[Method] By using mid-season rice varieties II-you 7 and Yuxiangyou203 as the experimental materials,field experiment was conducted at seven ecological sites in four provinces or cities in Southwestern China in 2009.A total of four nitrogen application levels were set as follows:by using 75 kg/hm2 of P2O5 and 75 kg/hm2 of K2O as the base fertilizer,extra 0,90,150 and 210 kg/hm2 of nitrogen fertilizer(in which,base fertilizer,base-tillering fertilizer and base-earing fertilizer respectively accounted for 60%,20% and 20%.) was applied,respectively.In the split-plot design,fertilizer was considered as the main factor while rice variety was taken as the secondary factor.A total of eight treatments were set with three replications.[Result] Highly significant differences of grain yield were found among seven locations,two varieties,four nitrogen application levels,interactions of site × variety and site × nitrogen application level,but the interaction of variety ×nitrogen application level had no significant influence on rice yield.There were highly significant effects of site,varieties and nitrogen application level on dry matter production,nitrogen content,nitrogen utilization efficiency.Highly significant negative correlations between uptake efficiency and utilization efficiency for nitrogen were found;and multiple stepwise regression analysis showed that nitrogen uptake-utilization efficiency were significantly influenced by different ecological sites,chemical quality of soil and the levels of nitrogen application.[Conclusion] The research will provide theoretical and practical basis for the highly efficient application of nitrogen in mid-season hybrid rice cultivation.
文摘Aim and Method Comparative molecular field analysis (CoMFA), a threedimensional quantitative structure-activity relationship (3D-QSAR) method was applied to a novelseries of C-3 substituted 4, 6-dichloioindole-2-carboxylic acids to study the relationship betweentheir structure and the affinity for the glycine site of the NMDA receptor. Result Hie coefficientsof cross-validation q^2 and non cross-validation r^2 for the model established by the study are0.744 and 0.993, respectively, the value of variance ratio F is 261.343, and standard error estimate(SE) is 0.039. Conclusion These values indicate that the CoMFA model may have a good prediction forthe activity of C-3 substituted 4, 6-dichloroin-dole-2-carboxylic acids. As a consequence, thepredicted activity values of new designed compounds supports our conclusion from the model.