In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems o...In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems of ZIF-8 powder.The effects of pH,contact time,and uranium concentration on the adsorption of ZIF-8/PP-g-MAH were investigated.Adsorption isotherm and kinetics analysis show that ZIF-8/PP-g-MAH has a high adsorption capacity of 478.5 mg/g,which is 1.26 times higher than that of ZIF-8,and a rapid adsorption equilibrium of 120 min,which is shortened to one-third of that required for ZIF-8(360 min).The adsorption process of ZIF-8/PP-g-MAH is consistent with that of the Langmuir isotherm and pseudo-second-order dynamic model.ZIF-8/PP-g-MAH also exhibits good selectivity for uranium in simulated seawater.The high adsorption performance of ZIF-8/PP-g-MAH is attributed to its membrane structure,which improves the utilization of coordination sites,including Zn-OH,C-N,and C=N.This study provides an efficient adsorption material for rapid uranium extraction,thus promoting the development of uranium extraction technologies.展开更多
Potential energy scan for uranium oxide (UO) was performed by ab initio configuration inter- action (CI) method and density functional theory methods at the PBE1 and the B3LYP levels in combination with the (ECPS...Potential energy scan for uranium oxide (UO) was performed by ab initio configuration inter- action (CI) method and density functional theory methods at the PBE1 and the B3LYP levels in combination with the (ECPSOMWB_AVQZ+2f) basis set for uranium and 6-311+G* for oxygen. The dissociation energies of UO, after being corrected for the zero-point vibrational energy, are 2.38, 3.76, and 3.31 eV at the CI, PBE1, and BaLYP levels, respectively. The calculated energy was fitted to potential functions of Morse, Lennard-Jones, and Rydberg. Only the Morse function is eligible for the potential. The anharmonieity constant is 0.00425. The anharmonic frequency is 540.95 em-1 deduced from the PBE1 results. Thermodynamic properties of entropy and heat capacity at 298.2-1500 K were calculated using DFT-UPBE1 results and Morse parameters. The relationship between entropy and temperature was established.展开更多
In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values wit...In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values with or without treatment by Proteinase K.The bacterial activities were observed through measuring the changes of solution potentials by platinum electrode with Ag/AgCl reference electrode and the intracellular fluorine was determined by-uorine ion-selective electrode.The results indicated that the tolerance of Acidithiobacillus ferrooxidans ATCC 23270 to fluorine could be obviously improved by domestication,HF was the effective form of fluorine to affect the bacterial activity,and pH increase or concentration change of ions of strong complex ability with fluorine ions in solution could result in false appearance of high fluorine-resistant strain.Some proteins located in cell wall or cell membrane were intimately relative with the bacterial fluorine tolerance.展开更多
A synthetic coffinite was hydrothermally prepared and characterized before conducting a series of acid sulfate leach tests under conditions of relevance to uranium extraction.The results were then compared with simila...A synthetic coffinite was hydrothermally prepared and characterized before conducting a series of acid sulfate leach tests under conditions of relevance to uranium extraction.The results were then compared with similar studies on synthetic versions of the related U4+minerals uraninite(UO2)and brannerite(UTi2O6)to identify and differentiate the rate and U extraction among these important uranium minerals.Tests examining the influence of residence time on uranium dissolution from synthetic coffinite,uraninite and brannerite showed that under similar experimental conditions,complete dissolution of uranium from coffinite was obtained between 36 and 48 h.The activation energy for this reaction was calculated to be 38.4 kJ/mol.This represented a significantly slower rate of dissolution than that indicated for uraninite which dissolved in 3 h(Ea=15.2 kJ/mol).The synthetic brannerite was leached at a much slower rate than the coffinite and reached a maximum dissolution of^18%U in 144 h(Ea=42-84 kJ/mol).The clear differentiation in rates and U extraction among the three minerals is consistent with previous literatures which suggest that in terms of leachability,uraninite>coffinite>brannerite.It is expected that the presence of impurities in natural coffinites would further inhibit leachability.展开更多
The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,pa...The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,particle size,initial concentration of uranium(Ⅵ),initial pH,presence of salt and competitive ions.The U-uptake by MOCZ increased with initial uranium(Ⅵ)concentration and bed height,but decreased as the flow rate and particle size increased.In the presence of salt and competitive ions,the breakthrough time was shorter.The adsorption capacity reached a maximum at pH of 6.3.The Thomas model was applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression.The breakthrough curves calculated from the model were in good agreement with the experimental data.The BDST model was used to study the influence of bed height on the adsorption of uranium(Ⅵ).Desorption of uranium(Ⅵ)in the MOCZ column was investigated.The column could be used for at least four adsorption-desorption cycles using 0.1mol.L-1 NaHCO3 solution as the elution.After desorption and regeneration with deionized water,MOCZ could be reused to adsorb uranium(Ⅵ)at a comparable capacity.Compared to raw zeolite,MOCZ showed better capacity for uranium(Ⅵ)removal.展开更多
To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results ...To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.展开更多
This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial desig...This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.展开更多
The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser sc...The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser scanning microscope(CLSM),electron backscatter diffraction(EBSD)and split Hopkinson pressure bar(SHPB).The results show that the initial coarse grained uranium was refined from about 1000 to 6.5μm prepared by ECAP at 3 passes and subsequent heat treatment,and the corresponding dynamic yield strength increased from 135 to 390 MPa.For the ECAPed uranium samples,the relationship between grain size and yield strength could be described by classical Hall−Petch relationship,and the fitting Hall−Petch relationship for the fine grained uranium samples prepared by ECAP was drawn.展开更多
Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physic...Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.展开更多
Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 ̄O-enrichment in the uranium oxides with respect to the common rock-forming mi...Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 ̄O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel < uraninite brannerite hematite < rutile < pitchblende <cassiterite uranium blacks coffinite sedovite UO3 < illite. Two sets of selfconsistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0~ 1200℃. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.展开更多
The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption...The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.展开更多
The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmissio...The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.展开更多
Here we present(^(234)U/^(238)U)data from river sediments collected on the Tibetan Plateau.The(^(234)U/^(238)U)ratios of a specific grain size fraction show good correlation with erosion rates,which were determined by...Here we present(^(234)U/^(238)U)data from river sediments collected on the Tibetan Plateau.The(^(234)U/^(238)U)ratios of a specific grain size fraction show good correlation with erosion rates,which were determined by in-situ–produced cosmogenic nuclides.This correlation has previously been observed in a wide range of geomorphic settings,suggesting that(^(234)U/^(238)U)ratios of fluvial sediments have great potential to quantify erosion rates.展开更多
The kinetics of U(IV)produced by hydrazine reduction of U(VI)with platinum as a catalyst in nitric acid media was studied to reveal the reaction mechanism and optimize the reaction process.Electron spin resonance(ESR)...The kinetics of U(IV)produced by hydrazine reduction of U(VI)with platinum as a catalyst in nitric acid media was studied to reveal the reaction mechanism and optimize the reaction process.Electron spin resonance(ESR)was used to determine the influence of nitric acid oxidation.The effects of nitric acid,hydrazine,U(VI)concentration,catalyst dosage and temperature on the reaction rate were also studied.In addition,the simulation of the reaction process was performed using density functional theory.The results show that the influence of oxidation on the main reaction is limited when the concentration of nitric acid is below 0.5 mol/L.The reaction kinetics equation below the concentration of 0.5 mol/L is found as:−dc(UO_(2)^(2+))/dt=kc^(0.5323)(UO_(2)^(2+))c^(0.2074)(N_(2)H_(5)^(+))c^(−0.2009)(H^(+)).When the temperature is 50℃,and the solid/liquid ratio r is 0.0667 g/mL,the reaction kinetics constant is k=0.00199(mol/L)^(0.4712)/min.Between 20℃ and 80℃,the reaction rate gradually increases with the increase of temperature,and changes from chemically controlled to diffusion-controlled.The simulations of density functional theory give further insight into the influence of various factors on the reaction process,with which the reaction mechanisms are determined according to the reaction kinetics and the simulation results.展开更多
The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium e...The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium extraction with over 90% at the Fe/S ratio of 5:0.5, 5:1 and 5:5, while poor extraction(<46%) at the Fe/S ratio of 5:0 and 5:10.Furthermore, the bacterial community analysis based on species-specific gyrB numbers indicated that, absent sulfur or excessive sulfur would be not conducive to the synergistic growth for A. ferrooxidans and A. thiooxidans, and then not conducive to the uranium dissolution. Meanwhile, the sulfur-oxidizers could play an important role in the process of uranium synergistic bioleaching by mixed bacterial consortia. Additionally, the characteristics of mineral residue was detected by SEM-EDS. The results showed appropriate sulfur dosage would change the structure and improve the porosity of passivation substance. Lastly, the uranium dissolution kinetics and biochemical reaction mechanism was analyzed. It indicated that the biochemical reaction coupling iron and sulfur had a pleiotropic effect on the uranium dissolution from the ore particles, appropriate Fe/S ratio is the key factor for uranium bioleaching by chemoautotrophic acidophiles.展开更多
High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of t...High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.展开更多
The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined an...The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.展开更多
The new uranyl complex UO2(NO3)2[PhN(CH3)C(O)(CH3)NPh]2 was synthesized and its crystal structure has been determined by single-crystal X-ray diffraction. Crystal data: C30H32N6O10U, triclinic, space group P with a = ...The new uranyl complex UO2(NO3)2[PhN(CH3)C(O)(CH3)NPh]2 was synthesized and its crystal structure has been determined by single-crystal X-ray diffraction. Crystal data: C30H32N6O10U, triclinic, space group P with a = 7.772(1), b = 9.267(1), c = 12.644(1) ? a = 68.246(8), b = 73.871(9), g = 84.99(1)o, V = 812.4(2) ?, Mr = 874.65, Z = 1, Dc = 1.788 g/cm3, F(000) = 426, m = 5.062 mm-1, the final R = 0.022 and wR = 0.059 for 3571 observed reflections (I > 2s(I)). The central uranyl ion is coordinated by six oxygen atoms, two from the carbonyl groups of N,N-dimethyl-N,N-dibenzenyl-urea molecules and the other four from two nitrate groups.展开更多
文摘In this study,the ZIF-8 membrane(ZIF-8/PP-g-MAH)is prepared by in situ synthesis of ZIF-8 on irradiation-pretreated polymer substrates to improve the uranium adsorption performance and address the recycling problems of ZIF-8 powder.The effects of pH,contact time,and uranium concentration on the adsorption of ZIF-8/PP-g-MAH were investigated.Adsorption isotherm and kinetics analysis show that ZIF-8/PP-g-MAH has a high adsorption capacity of 478.5 mg/g,which is 1.26 times higher than that of ZIF-8,and a rapid adsorption equilibrium of 120 min,which is shortened to one-third of that required for ZIF-8(360 min).The adsorption process of ZIF-8/PP-g-MAH is consistent with that of the Langmuir isotherm and pseudo-second-order dynamic model.ZIF-8/PP-g-MAH also exhibits good selectivity for uranium in simulated seawater.The high adsorption performance of ZIF-8/PP-g-MAH is attributed to its membrane structure,which improves the utilization of coordination sites,including Zn-OH,C-N,and C=N.This study provides an efficient adsorption material for rapid uranium extraction,thus promoting the development of uranium extraction technologies.
文摘Potential energy scan for uranium oxide (UO) was performed by ab initio configuration inter- action (CI) method and density functional theory methods at the PBE1 and the B3LYP levels in combination with the (ECPSOMWB_AVQZ+2f) basis set for uranium and 6-311+G* for oxygen. The dissociation energies of UO, after being corrected for the zero-point vibrational energy, are 2.38, 3.76, and 3.31 eV at the CI, PBE1, and BaLYP levels, respectively. The calculated energy was fitted to potential functions of Morse, Lennard-Jones, and Rydberg. Only the Morse function is eligible for the potential. The anharmonieity constant is 0.00425. The anharmonic frequency is 540.95 em-1 deduced from the PBE1 results. Thermodynamic properties of entropy and heat capacity at 298.2-1500 K were calculated using DFT-UPBE1 results and Morse parameters. The relationship between entropy and temperature was established.
基金Project(2010CB630903) supported by the National Basic Research Program of China
文摘In order to determine the mechanism of bacterial tolerance to fluorine,Acidithiobacillus ferrooxidans ATCC 23270 was domesticated and studied under the conditions of different fluorine concentrations and pH values with or without treatment by Proteinase K.The bacterial activities were observed through measuring the changes of solution potentials by platinum electrode with Ag/AgCl reference electrode and the intracellular fluorine was determined by-uorine ion-selective electrode.The results indicated that the tolerance of Acidithiobacillus ferrooxidans ATCC 23270 to fluorine could be obviously improved by domestication,HF was the effective form of fluorine to affect the bacterial activity,and pH increase or concentration change of ions of strong complex ability with fluorine ions in solution could result in false appearance of high fluorine-resistant strain.Some proteins located in cell wall or cell membrane were intimately relative with the bacterial fluorine tolerance.
文摘A synthetic coffinite was hydrothermally prepared and characterized before conducting a series of acid sulfate leach tests under conditions of relevance to uranium extraction.The results were then compared with similar studies on synthetic versions of the related U4+minerals uraninite(UO2)and brannerite(UTi2O6)to identify and differentiate the rate and U extraction among these important uranium minerals.Tests examining the influence of residence time on uranium dissolution from synthetic coffinite,uraninite and brannerite showed that under similar experimental conditions,complete dissolution of uranium from coffinite was obtained between 36 and 48 h.The activation energy for this reaction was calculated to be 38.4 kJ/mol.This represented a significantly slower rate of dissolution than that indicated for uraninite which dissolved in 3 h(Ea=15.2 kJ/mol).The synthetic brannerite was leached at a much slower rate than the coffinite and reached a maximum dissolution of^18%U in 144 h(Ea=42-84 kJ/mol).The clear differentiation in rates and U extraction among the three minerals is consistent with previous literatures which suggest that in terms of leachability,uraninite>coffinite>brannerite.It is expected that the presence of impurities in natural coffinites would further inhibit leachability.
基金Supported by the National Science Foundation for Postdoctoral Sciemists of China (20070420811) and the Science and Technology Department of Henan Province in China (200510459016).
文摘The adsorption of uranium(Ⅵ)on the manganese oxide coated zeolite(MOCZ)from aqueous solution was investigated in a fixed-bed column.The experiments were conducted to investigate the effects of bed height,flow rate,particle size,initial concentration of uranium(Ⅵ),initial pH,presence of salt and competitive ions.The U-uptake by MOCZ increased with initial uranium(Ⅵ)concentration and bed height,but decreased as the flow rate and particle size increased.In the presence of salt and competitive ions,the breakthrough time was shorter.The adsorption capacity reached a maximum at pH of 6.3.The Thomas model was applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression.The breakthrough curves calculated from the model were in good agreement with the experimental data.The BDST model was used to study the influence of bed height on the adsorption of uranium(Ⅵ).Desorption of uranium(Ⅵ)in the MOCZ column was investigated.The column could be used for at least four adsorption-desorption cycles using 0.1mol.L-1 NaHCO3 solution as the elution.After desorption and regeneration with deionized water,MOCZ could be reused to adsorb uranium(Ⅵ)at a comparable capacity.Compared to raw zeolite,MOCZ showed better capacity for uranium(Ⅵ)removal.
基金Project(19B126)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(21772035)supported by the National Natural Science Foundation of China+1 种基金Projects(2018JJ3099,2019JJ40058)supported by the Provincial Natural Science Foundation of Hunan,ChinaProject supported by the Innovation and Entrepreneurship Training Program of Hunan Institute of Engineering,China。
文摘To improve the adsorption performance and simplify uranium separation from aqueous media in post-treatment processes,a magnetic CoFe_(2)O_(4)@rGO composite was synthesized by microwave-hydrothermal method.The results of XRD,Raman,TEM/HRTEM,FTIR,BET and VSM characterization show that spinel-type cobalt ferrite CoFe_(2)O_(4) nanoparticles ca.13.4 nm in size are dispersedly anchored on the graphene sheet,and the saturation magnetization of the nanocomposite is 46.7 mA/(m^(2)·g).The effects of different pH,initial concentration and other conditions on uranium adsorption capacity were investigated,and adsorption kinetics equations were fitted to determine the adsorption behaviour of uranium on CoFe_(2)O_(4)@rGO in simulated uranium-containing seawater.It was observed that the uranium adsorption capacity of CoFe_(2)O_(4)@rGO composite at pH=5 is 127.6 mg/g,which is 1.31 and 2.43 times that of rGO and pure CoFe_(2)O_(4).The adsorption process conforms to Langmuir and quasi-second-order kinetic model.The excellent adsorption performance of CoFe_(2)O_(4)@rGO makes it potentially useful in the treatment of uranium-polluted water.
基金the Tarbiat Modares University & Nuclear Science and Technology Research Institute for their financial support
文摘This research aimed to enhance the column bioleaching recovery of uranium ore by Acidithiobacillus ferrooxidans.Seven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design.Four significant variables([Fe2+]initial,pH,aeration rate and inoculation percent)were selected for the optimization studies.The effect of these variables on uranium bioleaching was studied using a central composite design(CCD).The optimal values of the variables for the maximum uranium bioleaching recovery(90.27±0.98)%were as follows:[Fe2+]initial=2.89g/L,aeration rate420mL/min,pH1.45and inoculation6%(v/v).[Fe2+]initial was found to be the most effective parameter.The maximum uranium recovery from the predicted models was92.01%.This value was in agreement with the actual experimental value.The analysis of bioleaching residue of uranium ore under optimum conditions confirmed the formation of K-jarosite on the surface of minerals.By using optimal conditions,uranium bioleaching recovery is increased at column and jarosite precipitation is minimized.The kinetic model showed that uranium recovery has a direct relation with ferric ion concentration.
基金Project(51401187)supported by the National Natural Science Foundation of ChinaProjects(2014B0301046,2015B0301066)supported by the Science Development Fund of China Academy of Engineering Physics。
文摘The microstructure and mechanical properties of fine grained uranium prepared by equal channel angular pressing(ECAP)and subsequent intermediate heat treatment were investigated systematically by the confocal laser scanning microscope(CLSM),electron backscatter diffraction(EBSD)and split Hopkinson pressure bar(SHPB).The results show that the initial coarse grained uranium was refined from about 1000 to 6.5μm prepared by ECAP at 3 passes and subsequent heat treatment,and the corresponding dynamic yield strength increased from 135 to 390 MPa.For the ECAPed uranium samples,the relationship between grain size and yield strength could be described by classical Hall−Petch relationship,and the fitting Hall−Petch relationship for the fine grained uranium samples prepared by ECAP was drawn.
基金Supported by the National Natural Science Foundation of China (20976111) Sichuan Province Technologies R&D Program(2008GZ0026)
文摘Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.
文摘Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 ̄O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel < uraninite brannerite hematite < rutile < pitchblende <cassiterite uranium blacks coffinite sedovite UO3 < illite. Two sets of selfconsistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0~ 1200℃. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits.
基金Supported by the National S&T Major Project under Grant No.ZX06901
文摘The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.
基金Project(2014B0301046)supported by the Science Development Fund of China Academy of Engineering PhysicsProject(51401187)supported by the National Natural Science Foundation of China
文摘The deformed microstructure evolution of depleted uranium impacted by steel projectile at a velocity of50m/s was investigated by means of confocal laser scanning microscope,electron backscatter diffraction,transmission electron microscope and indenter technique.The experimental results showed that the spherical cap crater was formed in depleted uranium target impacted by steel projectile,and the diameter and depth of the impacted crater were5.45and1.01mm,respectively.From crater rim to deep matrix,four deformed zones were classified,including twin fragmentation zone,high density deformation twin zone,low density deformation twin zone and matrix zone.Twinning was considered as the dominant plastic deformation mechanism of depleted uranium subjected to impact loadings.Besides twinning,the dislocation slipping also played an important role to accommodate the plastic deformation.Finally,the deformed microstructure evolution of depleted uranium under high velocity impact was proposed.
基金supported by National Science Foundation of China(Grant No.41422205)
文摘Here we present(^(234)U/^(238)U)data from river sediments collected on the Tibetan Plateau.The(^(234)U/^(238)U)ratios of a specific grain size fraction show good correlation with erosion rates,which were determined by in-situ–produced cosmogenic nuclides.This correlation has previously been observed in a wide range of geomorphic settings,suggesting that(^(234)U/^(238)U)ratios of fluvial sediments have great potential to quantify erosion rates.
基金supported by the National Natural Science Foundation of China(No.11575078)Hunan Provincial Innovation Foundation for Postgraduates(CX20190713)。
文摘The kinetics of U(IV)produced by hydrazine reduction of U(VI)with platinum as a catalyst in nitric acid media was studied to reveal the reaction mechanism and optimize the reaction process.Electron spin resonance(ESR)was used to determine the influence of nitric acid oxidation.The effects of nitric acid,hydrazine,U(VI)concentration,catalyst dosage and temperature on the reaction rate were also studied.In addition,the simulation of the reaction process was performed using density functional theory.The results show that the influence of oxidation on the main reaction is limited when the concentration of nitric acid is below 0.5 mol/L.The reaction kinetics equation below the concentration of 0.5 mol/L is found as:−dc(UO_(2)^(2+))/dt=kc^(0.5323)(UO_(2)^(2+))c^(0.2074)(N_(2)H_(5)^(+))c^(−0.2009)(H^(+)).When the temperature is 50℃,and the solid/liquid ratio r is 0.0667 g/mL,the reaction kinetics constant is k=0.00199(mol/L)^(0.4712)/min.Between 20℃ and 80℃,the reaction rate gradually increases with the increase of temperature,and changes from chemically controlled to diffusion-controlled.The simulations of density functional theory give further insight into the influence of various factors on the reaction process,with which the reaction mechanisms are determined according to the reaction kinetics and the simulation results.
基金Project(51804165) supported by the National Natural Science Foundation of ChinaProject(2018JJ3441) supported by the Natural Science Foundation of Hunan Province,China。
文摘The role of Fe/S ratios(ω, g/g) in the uranium bioleaching from a complex uranium ore by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans consortium was investigated. The results showed good uranium extraction with over 90% at the Fe/S ratio of 5:0.5, 5:1 and 5:5, while poor extraction(<46%) at the Fe/S ratio of 5:0 and 5:10.Furthermore, the bacterial community analysis based on species-specific gyrB numbers indicated that, absent sulfur or excessive sulfur would be not conducive to the synergistic growth for A. ferrooxidans and A. thiooxidans, and then not conducive to the uranium dissolution. Meanwhile, the sulfur-oxidizers could play an important role in the process of uranium synergistic bioleaching by mixed bacterial consortia. Additionally, the characteristics of mineral residue was detected by SEM-EDS. The results showed appropriate sulfur dosage would change the structure and improve the porosity of passivation substance. Lastly, the uranium dissolution kinetics and biochemical reaction mechanism was analyzed. It indicated that the biochemical reaction coupling iron and sulfur had a pleiotropic effect on the uranium dissolution from the ore particles, appropriate Fe/S ratio is the key factor for uranium bioleaching by chemoautotrophic acidophiles.
基金Project(50874126)supported by the National Natural Science Foundation of China
文摘High-temperature creep properties of sintered uranium dioxide pellets with two grain sizes (9.0 μm and 23.8μm) were studied. The results indicate that the creep rate becomes a little faster with the reduction of the uranium dioxide grain size at the same temperature and the same load. At the same temperature, the logarithmic value of the steady creep rate vs stress has linear relation, and with increasing load, the steady creep rate of the sintered uranium dioxide pellet increases. Under the same load, the steady creep rate of the sintered uranium dioxide pellet increases with increasing temperature; and the creep rates of sintered uranium dioxide pellet with the grain size of 9.0 μm and 23.8 μm under 10 MPa are almost the same. The creep process is controlled both by Nabarro--Herring creep and Hamper-Dorn creep for uranium dioxide pellet with grain size of 9.0 μm, while Hamper---Dora creep is the dominantmechanism for uranium dioxide with grain size of 23.8 μm.
基金Supported by NSF-China Grant 10671156NSF of Shaanxi Province of China (SJ08A05) NWU Graduate Innovation and Creativity Funds under Grant No.09YZZ56
文摘The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.
基金This work was supported by the Funds of the Key Laboratory of Organic Syntheses of Jiangsu province (No. KJS01018) and the Funds of Young Teachers of Suzhou University
文摘The new uranyl complex UO2(NO3)2[PhN(CH3)C(O)(CH3)NPh]2 was synthesized and its crystal structure has been determined by single-crystal X-ray diffraction. Crystal data: C30H32N6O10U, triclinic, space group P with a = 7.772(1), b = 9.267(1), c = 12.644(1) ? a = 68.246(8), b = 73.871(9), g = 84.99(1)o, V = 812.4(2) ?, Mr = 874.65, Z = 1, Dc = 1.788 g/cm3, F(000) = 426, m = 5.062 mm-1, the final R = 0.022 and wR = 0.059 for 3571 observed reflections (I > 2s(I)). The central uranyl ion is coordinated by six oxygen atoms, two from the carbonyl groups of N,N-dimethyl-N,N-dibenzenyl-urea molecules and the other four from two nitrate groups.